Recording of brain activity across spatial scales

Curr Opin Neurobiol. 2015 Jun;32:68-77. doi: 10.1016/j.conb.2014.12.007. Epub 2014 Dec 24.

Abstract

Brain activity reveals exquisite coordination across spatial scales, from local microcircuits to brain-wide networks. Understanding how the brain represents, transforms and communicates information requires simultaneous recordings from distributed nodes of whole brain networks with single-cell resolution. Realizing multi-site recordings from communicating populations is hampered by the need to isolate clusters of interacting cells, often on a day-to-day basis. Chronic implantation of multi-electrode arrays allows long-term tracking of activity. Lithography on thin films provides a means to produce arrays of variable resolution, a high degree of flexibility, and minimal tissue displacement. Sequential application of surface arrays to monitor activity across brain-wide networks and subsequent implantation of laminar arrays to target specific populations enables continual refinement of spatial scale while maintaining coverage.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Brain / anatomy & histology
  • Brain / physiology*
  • Electrodes, Implanted*
  • Electrophysiological Phenomena / physiology*
  • Humans
  • Nerve Net / anatomy & histology
  • Nerve Net / physiology*