Using quantitative image analysis to classify axillary lymph nodes on breast MRI: a new application for the Z 0011 Era

Eur J Radiol. 2015 Mar;84(3):392-397. doi: 10.1016/j.ejrad.2014.12.003. Epub 2014 Dec 15.


Purpose: To assess the performance of computer extracted feature analysis of dynamic contrast enhanced (DCE) magnetic resonance images (MRI) of axillary lymph nodes. To determine which quantitative features best predict nodal metastasis.

Methods: This institutional board-approved HIPAA compliant study, in which informed patient consent was waived, collected enhanced T1 images of the axilla from patients with breast cancer. Lesion segmentation and feature analysis were performed on 192 nodes using a laboratory-developed quantitative image analysis (QIA) workstation. The importance of 28 features were assessed. Classification used the features as input to a neural net classifier in a leave-one-case-out cross-validation and evaluated with receiver operating characteristic (ROC) analysis.

Results: The area under the ROC curve (AUC) values for features in the task of distinguishing between positive and negative nodes ranged from just over 0.50 to 0.70. Five features yielded AUCs greater than 0.65: two morphological and three textural features. In cross-validation, the neural net classifier obtained an AUC of 0.88 (SE 0.03) for the task of distinguishing between positive and negative nodes.

Conclusion: QIA of DCE MRI demonstrated promising performance in discriminating between positive and negative axillary nodes.

Keywords: Axilla; Breast neoplasms; Computer-assisted; Image processing; ROC curve.

Publication types

  • Evaluation Study
  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Adult
  • Area Under Curve
  • Axilla / pathology*
  • Breast Neoplasms / pathology*
  • Carcinoma, Ductal, Breast / pathology*
  • Female
  • Humans
  • Image Enhancement / methods
  • Lymph Nodes / pathology*
  • Lymphatic Metastasis / pathology*
  • Magnetic Resonance Imaging* / methods
  • Middle Aged
  • ROC Curve