Establishing neural crest identity: a gene regulatory recipe
- PMID: 25564621
- PMCID: PMC4302844
- DOI: 10.1242/dev.105445
Establishing neural crest identity: a gene regulatory recipe
Abstract
The neural crest is a stem/progenitor cell population that contributes to a wide variety of derivatives, including sensory and autonomic ganglia, cartilage and bone of the face and pigment cells of the skin. Unique to vertebrate embryos, it has served as an excellent model system for the study of cell behavior and identity owing to its multipotency, motility and ability to form a broad array of cell types. Neural crest development is thought to be controlled by a suite of transcriptional and epigenetic inputs arranged hierarchically in a gene regulatory network. Here, we examine neural crest development from a gene regulatory perspective and discuss how the underlying genetic circuitry results in the features that define this unique cell population.
Keywords: Gene regulation; Migration; Neural crest; Neural plate border; Signaling; Transcription factors.
© 2015. Published by The Company of Biologists Ltd.
Figures
Similar articles
-
Neural crest cell evolution: how and when did a neural crest cell become a neural crest cell.Curr Top Dev Biol. 2015;111:3-26. doi: 10.1016/bs.ctdb.2014.11.001. Epub 2015 Jan 20. Curr Top Dev Biol. 2015. PMID: 25662256 Review.
-
The evolution and elaboration of vertebrate neural crest cells.Curr Opin Genet Dev. 2008 Dec;18(6):536-43. doi: 10.1016/j.gde.2008.11.006. Epub 2009 Jan 2. Curr Opin Genet Dev. 2008. PMID: 19121930
-
Epigenetic regulation in neural crest development.Dev Biol. 2014 Dec 15;396(2):159-68. doi: 10.1016/j.ydbio.2014.09.034. Epub 2014 Oct 24. Dev Biol. 2014. PMID: 25446277 Free PMC article. Review.
-
MicroRNAs and the neural crest: From induction to differentiation.Mech Dev. 2018 Dec;154:98-106. doi: 10.1016/j.mod.2018.05.009. Epub 2018 May 31. Mech Dev. 2018. PMID: 29859253 Review.
-
A gene regulatory network orchestrates neural crest formation.Nat Rev Mol Cell Biol. 2008 Jul;9(7):557-68. doi: 10.1038/nrm2428. Epub 2008 Jun 4. Nat Rev Mol Cell Biol. 2008. PMID: 18523435 Review.
Cited by
-
Control of craniofacial and brain development by Cullin3-RING ubiquitin ligases: Lessons from human disease genetics.Exp Cell Res. 2020 Nov 15;396(2):112300. doi: 10.1016/j.yexcr.2020.112300. Epub 2020 Sep 26. Exp Cell Res. 2020. PMID: 32986984 Free PMC article. Review.
-
Combinatorial expression motifs in signaling pathways.Cell Genom. 2024 Jan 10;4(1):100463. doi: 10.1016/j.xgen.2023.100463. Cell Genom. 2024. PMID: 38216284 Free PMC article.
-
Histone lactylation couples cellular metabolism with developmental gene regulatory networks.Nat Commun. 2024 Jan 2;15(1):90. doi: 10.1038/s41467-023-44121-1. Nat Commun. 2024. PMID: 38167340 Free PMC article.
-
A gene regulatory network for neural induction.Elife. 2023 Mar 3;12:e73189. doi: 10.7554/eLife.73189. Elife. 2023. PMID: 36867045 Free PMC article.
-
Molecular subgrouping of atypical teratoid/rhabdoid tumors-a reinvestigation and current consensus.Neuro Oncol. 2020 May 15;22(5):613-624. doi: 10.1093/neuonc/noz235. Neuro Oncol. 2020. PMID: 31889194 Free PMC article.
References
-
- Agarwal P., Verzi M. P., Nguyen T., Hu J., Ehlers M. L., McCulley D. J., Xu S.-M., Dodou E., Anderson J. P., Wei M. L. et al. (2011). The MADS box transcription factor MEF2C regulates melanocyte development and is a direct transcriptional target and partner of SOX10. Development 138, 2555-2565 10.1242/dev.056804 - DOI - PMC - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
