A review of quantitative genetic components of fitness in salmonids: implications for adaptation to future change

Evol Appl. 2008 May;1(2):222-38. doi: 10.1111/j.1752-4571.2008.00025.x.

Abstract

Salmonine fishes are commonly subjected to strong, novel selective pressures due to anthropogenic activities and global climate change, often resulting in population extinction. Consequently, there is considerable interest in predicting the long-term evolutionary trajectories of extant populations. Knowledge of the genetic architecture of fitness traits is integral to making these predictions. We reviewed the published, peer-reviewed literature for estimates of heritability and genetic correlation for fitness traits in salmonine fishes with two broad goals in mind: summarization of published data and testing for differences among categorical variables (e.g., species, life history type, experimental conditions). Balanced coverage of variables was lacking and estimates for wild populations and behavioral traits were nearly absent. Distributions of heritability estimates were skewed toward low values and distributions of genetic correlations toward large, positive values, suggesting that significant potential for evolution of traits exists. Furthermore, experimental conditions had a direct effect on h (2) estimates, and other variables had more complex effects on h (2) and r G estimates, suggesting that available estimates may be insufficient for use in models to predict evolutionary change in wild populations. Given this and other inherent complicating factors, making accurate predictions of the evolutionary trajectories of salmonine fishes will be a difficult task.

Keywords: charr; evolution; fitness; genetic architecture; genetic correlation; heritability; narrow-sense; quantitative genetics; salmon; trout.