Role of intrinsic aerobic capacity and ventilator-induced diaphragm dysfunction

J Appl Physiol (1985). 2015 Apr 1;118(7):849-57. doi: 10.1152/japplphysiol.00797.2014. Epub 2015 Jan 8.

Abstract

Prolonged mechanical ventilation (MV) leads to rapid diaphragmatic atrophy and contractile dysfunction, which is collectively termed "ventilator-induced diaphragm dysfunction" (VIDD). Interestingly, endurance exercise training prior to MV has been shown to protect against VIDD. Further, recent evidence reveals that sedentary animals selectively bred to possess a high aerobic capacity possess a similar skeletal muscle phenotype to muscles from endurance trained animals. Therefore, we tested the hypothesis that animals with a high intrinsic aerobic capacity would naturally be afforded protection against VIDD. To this end, animals were selectively bred over 33 generations to create two divergent strains, differing in aerobic capacity: high-capacity runners (HCR) and low-capacity runners (LCR). Both groups of animals were subjected to 12 h of MV and compared with nonventilated control animals within the same strains. As expected, contrasted to LCR animals, the diaphragm muscle from the HCR animals contained higher levels of oxidative enzymes (e.g., citrate synthase) and antioxidant enzymes (e.g., superoxide dismutase and catalase). Nonetheless, compared with nonventilated controls, prolonged MV resulted in significant diaphragmatic atrophy and impaired diaphragm contractile function in both the HCR and LCR animals, and the magnitude of VIDD did not differ between strains. In conclusion, these data demonstrate that possession of a high intrinsic aerobic capacity alone does not afford protection against VIDD. Importantly, these results suggest that endurance exercise training differentially alters the diaphragm phenotype to resist VIDD. Interestingly, levels of heat shock protein 72 did not differ between strains, thus potentially representing an important area of difference between animals with intrinsically high aerobic capacity and exercise-trained animals.

Keywords: mitochondria; muscle atrophy; oxidative stress; reactive oxygen species.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Diaphragm / physiopathology*
  • Exercise Tolerance*
  • Muscular Diseases / physiopathology*
  • Muscular Diseases / prevention & control
  • Physical Conditioning, Animal / methods*
  • Physical Fitness
  • Rats
  • Ventilator-Induced Lung Injury / physiopathology*
  • Ventilator-Induced Lung Injury / prevention & control