Dihydropyridine-sensitive low-threshold calcium channels in isolated rat hypothalamic neurones

J Physiol. 1989 May;412:181-95. doi: 10.1113/jphysiol.1989.sp017610.


1. Low-voltage-activated Ca2+ channels which produce a transient inward current were studied in neurones freshly isolated from the ventromedial hypothalamic region of the rat. Membrane currents were recorded using a suction-pipette technique which allows for internal perfusion under a single-electrode voltage clamp. A concentration-jump technique was also used for rapid drug application. 2. In most cells superfused with 10 mM-Ca2+, a transient inward Ca2+ current was evoked by a step depolarization to potentials more positive than -65 mV from a holding potential of -100 mV. Such a low-threshold Ca2+ current could easily be separated from a high-threshold, steady type of Ca2+ current by selecting the holding and test potential levels, as well as by resistance to the wash-out during cell dialysis. 3. Activation and inactivation processes of the low-threshold Ca2+ current were highly potential dependent at 20-22 degrees C. For a test potential change from -60 to +20 mV, the time to peak of the current decreased from 45 to 9 ms, and the time constant of the current decay decreased from 90 to 40 ms. The steady-state inactivation occurred at very negative potentials, reaching a 50% level at -93 mV. Recovery from inactivation showed a time constant between 2.63 and 0.94 s for a potential change from -80 to -120 mV. 4. The amplitude of the low-threshold Ca2+ current depended on the external Ca2+ concentration [( Ca2+]o), approaching saturation at 100 mM [Ca2+]o. Ba2+ substituted for Ca2+ reduced the current amplitude by 30-50% while Sr2+ produced no definite changes in the current amplitude. 5. The low-threshold Ca2+ current was blocked by various di- or trivalent cations in the sequence of La3+ greater than Zn2+ greater than Cd2+ greater than Ni2+ greater than Co2+. The corresponding apparent dissociation constants (KD) were 7 x 10(-7), 1 x 10(-4), 3 x 10(-4), 6 x 10(-4) and 3 x 10(-3) M. 6. Various organic Ca2+ antagonists were effective in blocking the low-threshold Ca2+ current in the following sequence: flunarizine greater than nicardipine greater than nifedipine greater than nimodipine greater than D600 (methoxyverapamil) greater than diltiazem. The corresponding KDs were 7 x 10(-7), 3.5 x 10(-6), 5 x 10(-6), 7 x 10(-6), 5 x 10(-5) and 7 x 10(-5) M. These Ca2+ antagonists induced a use-dependent decrease in the current amplitude.(ABSTRACT TRUNCATED AT 400 WORDS)

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Calcium Channels / drug effects
  • Calcium Channels / physiology*
  • Dihydropyridines / pharmacology*
  • Electrophysiology
  • Hypothalamus / drug effects
  • Hypothalamus / physiology*
  • In Vitro Techniques
  • Neurons / drug effects
  • Neurons / physiology*
  • Rats


  • Calcium Channels
  • Dihydropyridines