Fine Particulate Matter Components and Emergency Department Visits for Cardiovascular and Respiratory Diseases in the St. Louis, Missouri-Illinois, Metropolitan Area

Environ Health Perspect. 2015 May;123(5):437-44. doi: 10.1289/ehp.1307776. Epub 2015 Jan 9.

Abstract

Background: Given that fine particulate matter (≤ 2.5 μm; PM2.5) is a mixture of multiple components, it has been of high interest to identify its specific health-relevant physical and/or chemical features.

Objectives: We conducted a time-series study of PM2.5 and cardiorespiratory emergency department (ED) visits in the St. Louis, Missouri-Illinois metropolitan area, using 2 years of daily PM2.5 and PM2.5 component measurements (including ions, carbon, particle-phase organic compounds, and elements) made at the St. Louis-Midwest Supersite, a monitoring site of the U.S. Environmental Protection Agency Supersites ambient air monitoring research program.

Methods: Using Poisson generalized linear models, we assessed short-term associations between daily cardiorespiratory ED visit counts and daily levels of 24 selected pollutants. Associations were estimated for interquartile range changes in each pollutant. To allow comparison of relationships among multiple pollutants and outcomes with potentially different lag structures, we used 3-day unconstrained distributed lag models controlling for time trends and meteorology.

Results: Considering results of our primary models, as well as sensitivity analyses and models assessing co-pollutant confounding, we observed robust associations of cardiovascular disease visits with 17α(H),21β(H)-hopane and congestive heart failure visits with elemental carbon. We also observed a robust association of respiratory disease visits with ozone. For asthma/wheeze, associations were strongest with ozone and nitrogen dioxide; observed associations of asthma/wheeze with PM2.5 and its components were attenuated in two-pollutant models with these gases. Differential measurement error due to differential patterns of spatiotemporal variability may have influenced patterns of observed associations across pollutants.

Conclusions: Our findings add to the growing field examining the health effects of PM2.5 components. Combustion-related components of the pollutant mix showed particularly strong associations with cardiorespiratory ED visit outcomes.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Cardiovascular Diseases / epidemiology*
  • Emergency Service, Hospital / statistics & numerical data*
  • Environmental Monitoring
  • Humans
  • Illinois / epidemiology
  • Missouri / epidemiology
  • Particulate Matter / analysis*
  • Respiratory Tract Diseases / epidemiology*

Substances

  • Particulate Matter