Metabolism of 2-methylpropene (isobutylene) by the aerobic bacterium Mycobacterium sp. strain ELW1

Appl Environ Microbiol. 2015 Mar;81(6):1966-76. doi: 10.1128/AEM.03103-14. Epub 2015 Jan 9.

Abstract

An aerobic bacterium (Mycobacterium sp. strain ELW1) that utilizes 2-methylpropene (isobutylene) as a sole source of carbon and energy was isolated and characterized. Strain ELW1 grew on 2-methylpropene (growth rate = 0.05 h(-1)) with a yield of 0.38 mg (dry weight) mg 2-methylpropene(-1). Strain ELW1 also grew more slowly on both cis- and trans-2-butene but did not grow on any other C2 to C5 straight-chain, branched, or chlorinated alkenes tested. Resting 2-methylpropene-grown cells consumed ethene, propene, and 1-butene without a lag phase. Epoxyethane accumulated as the only detected product of ethene oxidation. Both alkene consumption and epoxyethane production were fully inhibited in cells exposed to 1-octyne, suggesting that alkene oxidation is initiated by an alkyne-sensitive, epoxide-generating monooxygenase. Kinetic analyses indicated that 1,2-epoxy-2-methylpropane is rapidly consumed during 2-methylpropene degradation, while 2-methyl-2-propen-1-ol is not a significant metabolite of 2-methylpropene catabolism. Degradation of 1,2-epoxy-2-methylpropane by 2-methylpropene-grown cells led to the accumulation and further degradation of 2-methyl-1,2-propanediol and 2-hydroxyisobutyrate, two sequential metabolites previously identified in the aerobic microbial metabolism of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA). Growth of strain ELW1 on 2-methylpropene, 1,2-epoxy-2-methylpropane, 2-methyl-1,2-propanediol, and 2-hydroxyisobutyrate was fully inhibited when cobalt ions were omitted from the growth medium, while growth on 3-hydroxybutyrate and other substrates was unaffected by the absence of added cobalt ions. Our results suggest that, like aerobic MTBE- and TBA-metabolizing bacteria, strain ELW1 utilizes a cobalt/cobalamin-dependent mutase to transform 2-hydroxyisobutyrate. Our results have been interpreted in terms of their impact on our understanding of the microbial metabolism of alkenes and ether oxygenates.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aerobiosis
  • Alkenes / metabolism*
  • Carbon / metabolism
  • Cobalt / metabolism
  • Coenzymes / metabolism
  • Culture Media / chemistry
  • DNA, Bacterial / chemistry
  • DNA, Bacterial / genetics
  • DNA, Ribosomal / chemistry
  • DNA, Ribosomal / genetics
  • Energy Metabolism
  • Hydroxybutyrates / metabolism
  • Molecular Sequence Data
  • Mycobacterium / isolation & purification
  • Mycobacterium / metabolism*
  • RNA, Ribosomal, 16S / genetics
  • Sequence Analysis, DNA

Substances

  • Alkenes
  • Coenzymes
  • Culture Media
  • DNA, Bacterial
  • DNA, Ribosomal
  • Hydroxybutyrates
  • RNA, Ribosomal, 16S
  • Cobalt
  • Carbon
  • 2-hydroxyisobutyric acid
  • isobutylene

Associated data

  • GENBANK/KM588199