The value of the follow-through derives from motor learning depending on future actions

Curr Biol. 2015 Feb 2;25(3):397-401. doi: 10.1016/j.cub.2014.12.037. Epub 2015 Jan 8.


In ball sports, we are taught to follow through, despite the inability of events after contact or release to influence the outcome [1, 2]. Here we show that the specific motor memory active at any given moment critically depends on the movement that will be made in the near future. We demonstrate that associating a different follow-through movement with two motor skills that normally interfere [3-7] allows them to be learned simultaneously, suggesting that distinct future actions activate separate motor memories. This implies that when learning a skill, a variable follow-through would activate multiple motor memories across practice, whereas a consistent follow-through would activate a single motor memory, resulting in faster learning. We confirm this prediction and show that such follow-through effects influence adaptation over time periods associated with real-world skill learning. Overall, our results indicate that movements made in the immediate future influence the current active motor memory. This suggests that there is a critical time period both before [8] and after the current movement that determines motor memory activation and controls learning.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Analysis of Variance
  • Association Learning / physiology*
  • Games, Experimental
  • Humans
  • Models, Psychological*
  • Motor Skills / physiology*
  • Psychomotor Performance / physiology
  • Time Factors