The effect of mechanical ventilator settings during ventilator hyperinflation techniques: a bench-top analysis

Anaesth Intensive Care. 2015 Jan;43(1):81-7. doi: 10.1177/0310057X1504300112.


Ventilator hyperinflations are used by physiotherapists for the purpose of airway clearance in intensive care. There is limited data to guide the selection of mechanical ventilator modes and settings that may achieve desired flow patterns for ventilator hyperinflation. A mechanical ventilator was connected to two lung simulators and a respiratory mechanics monitor. Peak inspiratory (PIFR) and expiratory flow rates (PEFR) were measured during manipulation of ventilator modes (pressure support ventilation [PSV], volume-controlled synchronised intermittent mandatory ventilation [VC-SIMV] and pressure-controlled synchronised intermittent mandatory ventilation [PC-SIMV]) and ventilator settings (including set tidal volume, positive end-expiratory pressure, inspiratory flow rate, inspiratory pause, pressure support, inspiratory time and/or inflation pressure). Additionally, each trial was conducted with high (0.05 l/cmH2O) and low (0.01 l/cmH2O) compliance settings on the lung simulators. Each trial was dichotomised into success or failure under three categories (attainment of PIFR-PEFR less than or equal to 0.9, PEFR/PIFR greater than 17 l/min, PEFR greater than or equal to 40 l/min). A total of 232 trials were conducted (96 VC-SIMV, 96 PC-SIMV, 40 PSV). A greater proportion of VC-SIMV trials were ceased due to high peak inspiratory pressures (35%). However, VC-SIMV trials were more likely to be successful at meeting all three outcome measures (26 VC-SIMV trials, 7 PC-SIMV trials, 0 PSV trials). It was found that manipulation of settings in VC-SIMV mode appears more successful than PSV and PC-SIMV for ventilator hyperinflations.

Keywords: intensive care; mechanical; physical therapy modalities; physical therapy specialty; respiratory mechanics; respiratory therapy; ventilators.

MeSH terms

  • Computer Simulation*
  • Respiration, Artificial / methods*
  • Respiratory Function Tests / methods*
  • Respiratory Mechanics*