Segmentation-based attenuation correction in positron emission tomography/magnetic resonance: erroneous tissue identification and its impact on positron emission tomography interpretation

Invest Radiol. 2015 May;50(5):339-46. doi: 10.1097/RLI.0000000000000131.


Objectives: The objective of this study was to evaluate the frequency and characteristics of artifacts in segmentation-based attenuation correction maps (μ-maps) of positron emission tomography/magnetic resonance (PET/MR) and their impact on PET interpretation and the standardized uptake value (SUV) quantification in normal tissue and lesions.

Materials and methods: The study was approved by the local institutional review board. Attenuation maps of 100 patients with PET/MR and preceding PET/computed tomography examination were retrospectively inspected for artifacts (tracers: 2-deoxy-2-[¹⁸F]fluoro-D-glucose (¹⁸F-FDG), ¹¹C-Choline, ⁶⁸Ga-DOTATOC, ⁶⁸Ga-DOTATATE, ¹¹C-Methionine). The artifacts were subdivided into 9 different groups on the basis of their localization and appearance. The impact of μ-map artifacts in normal tissue and lesions on PET interpretation was evaluated qualitatively via visual analysis in synopsis with the non-attenuation-corrected (NAC) PET as well as quantitatively by comparing the SUV in artifact regions to reference regions.

Results: Attenuation map artifacts were found in 72% of the head/neck data sets, 61% of the thoracic data sets, 25% of the upper abdominal data sets, and 26% of the pelvic data sets. The most frequent localizations of the overall 276 artifacts were around metal implants (16%), in the lungs (19%), and outer body contours (31%). Twenty-one percent of all PET-avid lesions (38 of 184 lesions) were affected by artifacts in the majority without further consequences for visual PET interpretation. However, 9 PET-avid lung lesions were masked owing to μ-map artifacts and, thus, were only detectable on the NAC PET or additional MR imaging sequences. Quantitatively, μ-map artifacts led to significant SUV changes in areas with erroneous assignment of air instead of soft tissue (ie, metal artifacts) and of soft tissue instead of lung. Nevertheless, no change in diagnosis would have been caused by μ-map artifacts.

Conclusions: Attenuation map artifacts that occur in a considerable percentage of PET/MR data sets have the potential to falsify PET quantification and visual PET interpretation. Nevertheless, on the basis of the present data, in the clinical interpretation setup, no changes in diagnosis due to μ-map artifacts may occur, especially when the μ-maps are checked for artifacts and PET/MR is read in synopsis with the NAC PET, if artifacts are present.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Aged, 80 and over
  • Algorithms
  • Artifacts*
  • Female
  • Humans
  • Image Enhancement / methods
  • Image Interpretation, Computer-Assisted / methods
  • Magnetic Resonance Imaging / methods*
  • Male
  • Middle Aged
  • Multimodal Imaging / methods*
  • Neoplasms / diagnosis*
  • Pattern Recognition, Automated / methods
  • Positron-Emission Tomography / methods*
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Subtraction Technique*