Defect-induced photoluminescence in monolayer semiconducting transition metal dichalcogenides

ACS Nano. 2015 Feb 24;9(2):1520-7. doi: 10.1021/nn5073495. Epub 2015 Jan 26.

Abstract

It is well established that defects strongly influence properties in two-dimensional materials. For graphene, atomic defects activate the Raman-active centrosymmetric A1g ring-breathing mode known as the D-peak. The relative intensity of this D-peak compared to the G-band peak is the most widely accepted measure of the quality of graphene films. However, no such metric exists for monolayer semiconducting transition metal dichalcogenides such as WS2 or MoS2. Here we intentionally create atomic-scale defects in the hexagonal lattice of pristine WS2 and MoS2 monolayers using plasma treatments and study the evolution of their Raman and photoluminescence spectra. High-resolution transmission electron microscopy confirms plasma-induced creation of atomic-scale point defects in the monolayer sheets. We find that while the Raman spectra of semiconducting transition metal dichalcogenides (at 532 nm excitation) are insensitive to defects, their photoluminescence reveals a distinct defect-related spectral feature located ∼0.1 eV below the neutral free A-exciton peak. This peak originates from defect-bound neutral excitons and intensifies as the two-dimensional (2D) sheet is made more defective. This spectral feature is observable in air under ambient conditions (room temperature and atmospheric pressure), which allows for a relatively simple way to determine the defectiveness of 2D semiconducting nanosheets. Controlled defect creation could also enable tailoring of the optical properties of these materials in optoelectronic device applications.

Keywords: defects; excitons; monolayer; photoluminescence; transition metal dichalcogenides.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.