Type VI Collagen Regulates Pericellular Matrix Properties, Chondrocyte Swelling, and Mechanotransduction in Mouse Articular Cartilage
- PMID: 25604429
- PMCID: PMC4414817
- DOI: 10.1002/art.39034
Type VI Collagen Regulates Pericellular Matrix Properties, Chondrocyte Swelling, and Mechanotransduction in Mouse Articular Cartilage
Abstract
Objective: Mechanical factors play a critical role in the physiology and pathology of articular cartilage, although the mechanisms of mechanical signal transduction are not fully understood. We undertook this study to test the hypothesis that type VI collagen is necessary for mechanotransduction in articular cartilage by determining the effects of type VI collagen knockout on the activation of the mechano-osmosensitive, calcium-permeable channel TRPV4 (transient receptor potential vanilloid channel 4) as well as on osmotically induced chondrocyte swelling and pericellular matrix (PCM) mechanical properties.
Methods: Confocal laser scanning microscopy was used to image TRPV4-mediated calcium signaling and osmotically induced cell swelling in intact femora from 2- and 9-month-old wild-type (WT) and type VI collagen-deficient (Col6a1(-/-)) mice. Immunofluorescence-guided atomic force microscopy was used to map PCM mechanical properties based on the presence of perlecan.
Results: Hypo-osmotic stress-induced TRPV4-mediated calcium signaling was increased in Col6a1(-/-) mice relative to WT controls at 2 months. Col6a1(-/-) mice exhibited significantly increased osmotically induced cell swelling and decreased PCM moduli relative to WT controls at both ages.
Conclusion: In contrast to our original hypothesis, type VI collagen was not required for TRPV4-mediated Ca(2+) signaling; however, knockout of type VI collagen altered the mechanical properties of the PCM, which in turn increased the extent of cell swelling and osmotically induced TRPV4 signaling in an age-dependent manner. These findings emphasize the role of the PCM as a transducer of mechanical and physicochemical signals, and they suggest that alterations in PCM properties, as may occur with aging or osteoarthritis, can influence mechanotransduction via TRPV4 or other ion channels.
© 2015, American College of Rheumatology.
Figures
Similar articles
-
Developmental and osteoarthritic changes in Col6a1-knockout mice: biomechanics of type VI collagen in the cartilage pericellular matrix.Arthritis Rheum. 2009 Mar;60(3):771-9. doi: 10.1002/art.24293. Arthritis Rheum. 2009. PMID: 19248115 Free PMC article.
-
A biomechanical role for perlecan in the pericellular matrix of articular cartilage.Matrix Biol. 2012 Jul;31(6):320-7. doi: 10.1016/j.matbio.2012.05.002. Epub 2012 May 30. Matrix Biol. 2012. PMID: 22659389 Free PMC article.
-
FGF-2 is bound to perlecan in the pericellular matrix of articular cartilage, where it acts as a chondrocyte mechanotransducer.Osteoarthritis Cartilage. 2007 Jul;15(7):752-63. doi: 10.1016/j.joca.2007.01.021. Epub 2007 Mar 23. Osteoarthritis Cartilage. 2007. PMID: 17368052
-
The pericellular matrix as a transducer of biomechanical and biochemical signals in articular cartilage.Ann N Y Acad Sci. 2006 Apr;1068:498-512. doi: 10.1196/annals.1346.011. Ann N Y Acad Sci. 2006. PMID: 16831947 Review.
-
Mechanical Cues: Bidirectional Reciprocity in the Extracellular Matrix Drives Mechano-Signalling in Articular Cartilage.Int J Mol Sci. 2021 Dec 18;22(24):13595. doi: 10.3390/ijms222413595. Int J Mol Sci. 2021. PMID: 34948394 Free PMC article. Review.
Cited by
-
Hyaluronic acid and multiwalled carbon nanotubes as bioink additives for cartilage tissue engineering.Sci Rep. 2023 Jan 12;13(1):646. doi: 10.1038/s41598-023-27901-z. Sci Rep. 2023. PMID: 36635477 Free PMC article.
-
Microenvironmental mechanoactivation through Yap/Taz suppresses chondrogenic gene expression.Mol Biol Cell. 2023 Jun 1;34(7):ar73. doi: 10.1091/mbc.E22-12-0543. Epub 2023 Apr 12. Mol Biol Cell. 2023. PMID: 37043309 Free PMC article.
-
Applied Compressive Strain Governs Hyaline-like Cartilage versus Fibrocartilage-like ECM Produced within Hydrogel Constructs.Int J Mol Sci. 2023 Apr 18;24(8):7410. doi: 10.3390/ijms24087410. Int J Mol Sci. 2023. PMID: 37108575 Free PMC article.
-
Covalent Grafting of Functionalized MEW Fibers to Silk Fibroin Hydrogels to Obtain Reinforced Tissue Engineered Constructs.Biomacromolecules. 2024 Mar 11;25(3):1563-1577. doi: 10.1021/acs.biomac.3c01147. Epub 2024 Feb 7. Biomacromolecules. 2024. PMID: 38323427 Free PMC article.
-
Skeletal dysplasia-causing TRPV4 mutations suppress the hypertrophic differentiation of human iPSC-derived chondrocytes.Elife. 2023 Feb 22;12:e71154. doi: 10.7554/eLife.71154. Elife. 2023. PMID: 36810131 Free PMC article.
References
-
- Turkiewicz A, Petersson IF, Bjork J, Hawker G, Dahlberg LE, Lohmander LS, et al. Current and future impact of osteoarthritis on health care: a population-based study with projections to year 2032. Osteoarth Cartilage. 2014;22(11):1826–32. - PubMed
-
- Helminen H, Jurvelin J, Kiviranta I, Paukkonen K, Saamanen A, Tammi M. Joint loading effects on articular cartilage: A historical review. In: Helminen HJ, Kiviranta I, Tammi M, Saamanen AM, K P, Jurvelin J, editors. Joint Loading: Biology and Health of Articular Structures. Wright and Sons; Bristol: 1987. pp. 1–46.
-
- Lohmander LS, Englund PM, Dahl LL, Roos EM. The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Am J Sports Med. 2007;35(10):1756–69. - PubMed
-
- Leroux MA, Cheung HS, Bau JL, Wang JY, Howell DS, Setton LA. Altered mechanics and histomorphometry of canine tibial cartilage following joint immobilization. Osteoarth Cartilage. 2001;9(7):633–40. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous
