Interoceptive awareness describes the ability to consciously perceive inner bodily signals, such as one's own heartbeat. The right anterior insula is assumed to mediate this ability. The role of the posterior insula, particularly posterior-to-anterior insula signal flows is less clear in this respect. We scanned 27 healthy people with either high or low interoceptive awareness using 3T fMRI, while they either monitored their own heartbeats, or external tones, respectively. We used a combination of network centrality and bivariate connectivity analyses to characterize changes in cortical signal flows between the posterior insula and the anterior insula during interoceptive awareness or exteroceptive awareness, respectively. We show that heartbeat monitoring was accompanied by reduced network centrality of the right posterior insula, and decreased functional connectivity strengths between the right posterior insula and the right mid and anterior insula. In addition, decreased signal flows between the right posterior insula and the bilateral anterior cingulate cortices, and the bilateral orbitofrontal cortices were observed during interoceptive awareness. Functional connectivity changes were only shown by people with high interoceptive awareness, and occurred specifically within the low-frequency range (i.e., <0.1 Hz). Both groups did not differ in their functional connectivity profiles during rest. Our results show for the first time that interoceptive awareness changes intra-insula signal flows in the low-frequency range. We speculate that the selective inhibition of slow signal progression along the posterior-to-anterior insula pathway during interoceptive awareness allows the salient and noiseless detection of one's own heartbeat.
Keywords: Body awareness; Functional connectivity; Interoception; Plasticity; Resting state; fMRI.