Imatinib in pulmonary arterial hypertension: c-Kit inhibition

Pulm Circ. 2014 Sep;4(3):452-5. doi: 10.1086/677359.

Abstract

Pulmonary arterial hypertension (PAH) is a progressive disease characterized by severe remodeling of the pulmonary artery resulting in increased pulmonary artery pressure and right ventricular hypertrophy and, ultimately, failure. Bone marrow-derived progenitor cells play a critical role in vascular homeostasis and have been shown to be involved in the pathogenesis of PAH. A proliferation of c-Kit(+) hematopoietic progenitors and mast cells has been noted in the remodeled vessels in PAH. Imatinib, a tyrosine kinase inhibitor that targets c-Kit, has been shown to be beneficial for patients with PAH. Here we hypothesize that the clinical benefit of imatinib in PAH could be related to c-Kit inhibition of progenitor cell mobilization and maturation into mast cells. As a corollary to the phase 3 study using imatinib in PAH, blood samples were collected from 12 patients prior to starting study drug (baseline) and while on treatment at weeks 4 and 24. Eight were randomized to imatinib and 4 to placebo. Circulating c-Kit(+) and CD34(+)CD133(+) hematopoietic progenitors as well as biomarkers of mast cell numbers and activation were measured. Circulating CD34(+)CD133(+) and c-Kit(+) progenitor cells as well as c-Kit(+)/CD34(+)CD133(+) decreased with imatinib therapy (all P < 0.05). In addition, total tryptase, a marker of mast cell load, dropped with imatinib therapy (P = 0.02) and was related to pulmonary vascular resistance (R = 0.7, P = 0.02). The findings support c-Kit inhibition as a potential mechanism of action of imatinib in PAH and suggest that tryptase is a potential biomarker of response to therapy.

Keywords: c-Kit; imatinib; mast cells; progenitor cells; pulmonary hypertension.