An electrochemical impedance spectroscopy investigation of the overpotentials in Li-O2 batteries

ACS Appl Mater Interfaces. 2015 Feb 25;7(7):4039-47. doi: 10.1021/am5083254. Epub 2015 Feb 11.


Lithium-O2 (Li-O2) batteries are currently limited by a large charge overpotential at practically relevant current densities, and the origin of this overpotential has been heavily debated in the literature. This paper presents a series of electrochemical impedance measurements suggesting that the increase in charge potential is not caused by an increase in the internal resistance. It is proposed that the potential shift is instead dictated by a mixed potential of parasitic reactions and Li2O2 oxidation. The measurements also confirm that the rapid potential loss near the end of discharge ("sudden death") is explained by an increase in the charge transport resistance. The findings confirm that our theory and conclusions in ref 1, based on experiments on smooth small-area glassy carbon cathodes, are equally valid in real Li-O2 batteries with porous cathodes. The parameter variations performed in this paper are used to develop the understanding of the electrochemical impedance, which will be important for further improvement of the Li-air battery.

Keywords: Li−O2 batteries; battery performance; electrochemical impedance spectroscopy; mixed potential; overpotential.

Publication types

  • Research Support, Non-U.S. Gov't