Oil accumulation by the oleaginous diatom Fistulifera solaris as revealed by the genome and transcriptome
- PMID: 25634988
- PMCID: PMC4330590
- DOI: 10.1105/tpc.114.135194
Oil accumulation by the oleaginous diatom Fistulifera solaris as revealed by the genome and transcriptome
Abstract
Oleaginous photosynthetic organisms such as microalgae are promising sources for biofuel production through the generation of carbon-neutral sustainable energy. However, the metabolic mechanisms driving high-rate lipid production in these oleaginous organisms remain unclear, thus impeding efforts to improve productivity through genetic modifications. We analyzed the genome and transcriptome of the oleaginous diatom Fistulifera solaris JPCC DA0580. Next-generation sequencing technology provided evidence of an allodiploid genome structure, suggesting unorthodox molecular evolutionary and genetic regulatory systems for reinforcing metabolic efficiencies. Although major metabolic pathways were shared with nonoleaginous diatoms, transcriptome analysis revealed unique expression patterns, such as concomitant upregulation of fatty acid/triacylglycerol biosynthesis and fatty acid degradation (β-oxidation) in concert with ATP production. This peculiar pattern of gene expression may account for the simultaneous growth and oil accumulation phenotype and may inspire novel biofuel production technology based on this oleaginous microalga.
© 2015 American Society of Plant Biologists. All rights reserved.
Figures
Similar articles
-
Comprehensive analysis of triacylglycerol lipases in the oleaginous diatom Fistulifera solaris JPCC DA0580 with transcriptomics under lipid degradation.J Biosci Bioeng. 2018 Aug;126(2):258-265. doi: 10.1016/j.jbiosc.2018.03.003. Epub 2018 Apr 5. J Biosci Bioeng. 2018. PMID: 29628268
-
Homoeolog expression bias in allopolyploid oleaginous marine diatom Fistulifera solaris.BMC Genomics. 2018 May 4;19(1):330. doi: 10.1186/s12864-018-4691-0. BMC Genomics. 2018. PMID: 29728068 Free PMC article.
-
Chloroplast-targeting protein expression in the oleaginous diatom Fistulifera solaris JPCC DA0580 toward metabolic engineering.J Biosci Bioeng. 2015 Jan;119(1):28-34. doi: 10.1016/j.jbiosc.2014.06.008. Epub 2014 Jul 16. J Biosci Bioeng. 2015. PMID: 25043335
-
Metabolic Innovations Underpinning the Origin and Diversification of the Diatom Chloroplast.Biomolecules. 2019 Jul 30;9(8):322. doi: 10.3390/biom9080322. Biomolecules. 2019. PMID: 31366180 Free PMC article. Review.
-
Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology.Prog Lipid Res. 2013 Oct;52(4):395-408. doi: 10.1016/j.plipres.2013.05.002. Epub 2013 May 16. Prog Lipid Res. 2013. PMID: 23685199 Review.
Cited by
-
MarFERReT, an open-source, version-controlled reference library of marine microbial eukaryote functional genes.Sci Data. 2023 Dec 21;10(1):926. doi: 10.1038/s41597-023-02842-4. Sci Data. 2023. PMID: 38129449 Free PMC article.
-
Nuclear Transformation of the Marine Pennate Diatom Nitzschia sp. Strain NIES-4635 by Multi-Pulse Electroporation.Mar Biotechnol (NY). 2023 Dec;25(6):1208-1219. doi: 10.1007/s10126-023-10273-w. Epub 2023 Dec 10. Mar Biotechnol (NY). 2023. PMID: 38071657
-
Strategies of NaCl Tolerance in Saline-Alkali-Tolerant Green Microalga Monoraphidium dybowskii LB50.Plants (Basel). 2023 Oct 7;12(19):3495. doi: 10.3390/plants12193495. Plants (Basel). 2023. PMID: 37836235 Free PMC article.
-
Extreme genome diversity and cryptic speciation in a harmful algal-bloom-forming eukaryote.Curr Biol. 2023 Jun 5;33(11):2246-2259.e8. doi: 10.1016/j.cub.2023.05.003. Epub 2023 May 23. Curr Biol. 2023. PMID: 37224809
-
Improving the genome and proteome annotations of the marine model diatom Thalassiosira pseudonana using a proteogenomics strategy.Mar Life Sci Technol. 2023 Feb 3;5(1):102-115. doi: 10.1007/s42995-022-00161-y. eCollection 2023 Feb. Mar Life Sci Technol. 2023. PMID: 37073328 Free PMC article.
References
-
- Allen A.E., Dupont C.L., Oborník M., Horák A., Nunes-Nesi A., McCrow J.P., Zheng H., Johnson D.A., Hu H., Fernie A.R., Bowler C. (2011). Evolution and metabolic significance of the urea cycle in photosynthetic diatoms. Nature 473: 203–207. - PubMed
-
- Armbrust E.V., et al. (2004). The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306: 79–86. - PubMed
-
- Bardil A., de Almeida J.D., Combes M.C., Lashermes P., Bertrand B. (2011). Genomic expression dominance in the natural allopolyploid Coffea arabica is massively affected by growth temperature. New Phytol. 192: 760–774. - PubMed
-
- Bowler C., et al. (2008). The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456: 239–244. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
