Mechanism of action of cysteinyl leukotrienes on glucose and lactate balance and on flow in perfused rat liver. Comparison with the effects of sympathetic nerve stimulation and noradrenaline

Eur J Biochem. 1989 Mar 15;180(2):273-81. doi: 10.1111/j.1432-1033.1989.tb14644.x.

Abstract

Rat livers were perfused at constant pressure via the portal vein with media containing 5 mM glucose, 2 mM lactate and 0.2 mM pyruvate. 1. Leukotrienes C4 and D4 enhanced glucose and lactate output and reduced perfusion flow to the same extent and with essentially identical kinetics. They both caused half-maximal alterations (area under the curve) of carbohydrate metabolism at a concentration of about 1 nM and of flow at about 5 nM. The leukotriene-C4/D4 antagonist CGP 35949 B inhibited the metabolic and hemodynamic effects of 5 nM leukotrienes C4 and D4 with the same efficiency, causing 50% inhibition at about 0.1 microM. 2. Leukotriene C4 elicited the same metabolic and hemodynamic alterations with the same kinetics as leukotriene D4 in livers from rats pretreated with the gamma-glutamyltransferase inhibitor, acivicin. 3. The calcium antagonist, nifedipine, at a concentration of 50 microM did not affect the metabolic and hemodynamic changes caused by 5 nM leukotriene D4. The smooth-muscle relaxant, nitroprussiate, at a concentration of 10 microM reduced flow changes, without significantly affecting the metabolic alterations. 4. Leukotriene D4 not only reduced flow; it also caused an intrahepatic redistribution of flow, restricting some areas from perfusion. Thus, leukotrienes increased glucose and lactate output directly in the accessible parenchyma and, in addition, indirectly by washout from restricted areas during their reopening upon termination of application. 5. The phospholipase A2 inhibitor, bromophenacyl bromide, but not the cyclooxygenase inhibitor, indomethacin, at a concentration of 20 microM reduced the metabolic and hemodynamic effects of 5 mM leukotriene D4. 6. Stimulation of the sympathetic hepatic nerves with 2-ms rectangular pulses at 20 Hz and infusion of 1 microM noradrenaline increased glucose and lactate output and decreased flow, similar to 10 nM leukotrienes C4 and D4. The kinetics of the metabolic and hemodynamic changes caused by the leukotrienes differed, however, from those due to nerve stimulation and noradrenaline. 7. The leukotriene-C4/D4 antagonist, CGP 35949 B, even at very high concentrations (20 microM) inhibited the metabolic and hemodynamic alterations caused by nerve stimulation or noradrenaline infusion only slightly and unspecifically.(ABSTRACT TRUNCATED AT 400 WORDS)

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Electric Stimulation
  • Glucose / metabolism*
  • Kinetics
  • Lactates / metabolism*
  • Liver / drug effects
  • Liver / innervation
  • Liver / metabolism*
  • Liver Circulation
  • Male
  • Norepinephrine / pharmacology
  • Perfusion
  • Rats
  • Rats, Inbred Strains
  • SRS-A / antagonists & inhibitors
  • SRS-A / pharmacology*
  • Structure-Activity Relationship
  • Tetrazoles / pharmacology
  • gamma-Glutamyltransferase / antagonists & inhibitors

Substances

  • Lactates
  • SRS-A
  • Tetrazoles
  • CGP 35949
  • gamma-Glutamyltransferase
  • Glucose
  • Norepinephrine