Mini-UAV based sensory system for measuring environmental variables in greenhouses

Sensors (Basel). 2015 Feb 2;15(2):3334-50. doi: 10.3390/s150203334.


This paper describes the design, construction and validation of a mobile sensory platform for greenhouse monitoring. The complete system consists of a sensory system on board a small quadrotor (i.e., a four rotor mini-UAV). The goals of this system include taking measures of temperature, humidity, luminosity and CO2 concentration and plotting maps of these variables. These features could potentially allow for climate control, crop monitoring or failure detection (e.g., a break in a plastic cover). The sensors have been selected by considering the climate and plant growth models and the requirements for their integration onboard the quadrotor. The sensors layout and placement have been determined through a study of quadrotor aerodynamics and the influence of the airflows from its rotors. All components of the system have been developed, integrated and tested through a set of field experiments in a real greenhouse. The primary contributions of this paper are the validation of the quadrotor as a platform for measuring environmental variables and the determination of the optimal location of sensors on a quadrotor.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Air Conditioning*
  • Carbon Monoxide / isolation & purification*
  • Climate
  • Humans
  • Humidity
  • Plant Development*
  • Plastics
  • Remote Sensing Technology*
  • Temperature


  • Plastics
  • Carbon Monoxide