Resveratrol, the most important ingredient extracted from Polygonum cuspidatum, exerts cytoprotective effects via anti-inflammatory actions in vitro. In this study, we investigated this effect of resveratrol on the lipopolysaccharide (LPS)-induced inflammatory response and its underlying molecular mechanism of action in RAW264.7 murine macrophages. Results showed that resveratrol down-regulated the expression of inducible nitric oxide synthase (iNOS) and interleukin-6 (IL-6), therefore, suppressed the production of nitric oxide and the secretion of IL-6 in LPS-stimulated RAW264.7 cells in a dose-dependent manner. Resveratrol also inhibited the translocation of high-mobility group box 1 (HMGB1) from the nucleus to the cytoplasm and of nuclear transcription factor kappa-B (NF-κB) p65 from the cytoplasm to the nucleus; it suppressed the phosphorylation of IκBα. Furthermore, these actions were mediated by suppressing the phosphorylation of signal transducer and activator of transcription (STAT)-1 and -3. In conclusion, these data indicate that resveratrol exerts anti-inflammatory effects, at least in part by reducing the release of HMGB1 and modulating the NF-κB and Janus kinase/STAT signaling pathways. Resveratrol could potentially be developed as a useful agent for the chemoprevention of inflammatory diseases.
Keywords: JAK/STAT; NF-κB; anti-inflammatory; high-mobility group box 1; resveratrol.
© The Author 2015. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.