Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Jan 21:6:8.
doi: 10.3389/fmicb.2015.00008. eCollection 2015.

Efflux-mediated fluoroquinolone resistance in the multidrug-resistant Pseudomonas aeruginosa clinical isolate PA7: identification of a novel MexS variant involved in upregulation of the mexEF-oprN multidrug efflux operon

Affiliations

Efflux-mediated fluoroquinolone resistance in the multidrug-resistant Pseudomonas aeruginosa clinical isolate PA7: identification of a novel MexS variant involved in upregulation of the mexEF-oprN multidrug efflux operon

Yuji Morita et al. Front Microbiol. .

Abstract

The emergence of multidrug-resistant Pseudomonas aeruginosa has become a serious problem in medical settings. P. aeruginosa clinical isolate PA7 is resistant to fluoroquinolones, aminoglycosides, and most β-lactams but not imipenem. In this study, enhanced efflux-mediated fluoroquinolone resistance of PA7 was shown to reflect increased expression of two resistance nodulation cell division (RND) -type multidrug efflux operons, mexEF-oprN and mexXY-oprA. Such a clinical isolate has rarely been reported because MexEF-OprN-overproducing mutants often increase susceptibility to aminoglycosides apparently owing to impairment of the MexXY system. A mutant of PA7 lacking three RND-type multidrug efflux operons (mexAB-oprM, mexEF-oprN, and mexXY-oprA) was susceptible to all anti-pseudomonas agents we tested, supporting an idea that these RND-type multidrug efflux transporters are molecular targets to overcome multidrug resistance in P. aeruginosa. mexEF-oprN-upregulation in P. aeruginosa PA7 was shown due to a MexS variant harboring the Valine-155 amino acid residue. This is the first genetic evidence shown that a MexS variant causes mexEF-oprN-upregulation in P. aeruginosa clinical isolates.

Keywords: Pseudomonas aeruginosa; efflux; mexEF-oprN; mexS; mexXY-oprA.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Boratyn G. M., Camacho C., Cooper P. S., Coulouris G., Fong A., Ma N. (2013). BLAST: a more efficient report with usability improvements. Nucleic Acids Res. 41, W29–W33. 10.1093/nar/gkt282 - DOI - PMC - PubMed
    1. Bordoli L., Kiefer F., Arnold K., Benkert P., Battey J., Schwede T. (2009). Protein structure homology modeling using SWISS-MODEL workspace. Nat. Protoc. 4, 1–13. 10.1038/nprot.2008.197 - DOI - PubMed
    1. Breidenstein E. B., De La Fuente-Nunez C., Hancock R. E. (2011). Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol. 19, 419–426. 10.1016/j.tim.2011.04.005 - DOI - PubMed
    1. Bruchmann S., Dotsch A., Nouri B., Chaberny I. F., Haussler S. (2013). Quantitative contributions of target alteration and decreased drug accumulation to Pseudomonas aeruginosa fluoroquinolone resistance. Antimicrob. Agents Chemother. 57, 1361–1368. 10.1128/aac.01581-12 - DOI - PMC - PubMed
    1. Cabot G., Ocampo-Sosa A. A., Tubau F., Macia M. D., Rodriguez C., Moya B. (2011). Overexpression of AmpC and efflux pumps in Pseudomonas aeruginosa isolates from bloodstream infections: prevalence and impact on resistance in a Spanish multicenter study. Antimicrob. Agents Chemother. 55, 1906–1911. 10.1128/aac.01645-10 - DOI - PMC - PubMed

LinkOut - more resources