Background: We recently showed that reactive oxygen species (ROS) and mitochondrial DNA damage and deletions were attenuated by postconditioning (POC). It is not known, however, whether a population of progenitor cells is recruited by POC and is responsible for repair of renal tubular epithelial cells after ischemic injury.
Methods: The model of renal POC was induced by 45 min clamping of the left renal artery and right nephrectomy followed by 7 min of short-time full reperfusion and 3 cycles of 30 s ischemia and 30 s reperfusion. The lymphocyte compartment of peripheral blood was evaluated by fluorescence-activated cell sorting (FACS) to determine expression of the bone marrow-derived progenitor cell markers CXC-chemokine receptor 4 (CXCR4), c-Kit, and CD34, at 12 h, 1 day and 3 days post-ischemia. Serum and kidney tissue were collected for analysis at 3 and 7 days post-ischemia.
Results: Renal functional and structural recovery was markedly improved by POC, which increased the number of CXCR4(+) and CD34(+) stem cells in peripheral blood and kidney tissue. Inhibition of ROS burst by POC was likely associated with increased hypoxia-inducible factor-1 expression, which may further promote stromal cell-derived factor 1 (SDF-1) expression.
Conclusions: The mechanisms of stem cell recruitment to the injured foci mobilized by POC appear to be mediated by moderate oxidative stress, which may lead to increased SDF-1 expression.