Neuronal representation of duration discrimination in the monkey striatum

Physiol Rep. 2015 Feb 12;3(2):e12283. doi: 10.14814/phy2.12283. Print 2015 Feb 1.

Abstract

Functional imaging and lesion studies in humans and animals suggest that the basal ganglia are crucial for temporal information processing. To elucidate neuronal mechanisms of interval timing in the basal ganglia, we recorded single-unit activity from the striatum of two monkeys while they performed a visual duration discrimination task. In the task, blue and red cues of different durations (0.2-2.0 sec) were successively presented. Each of the two cues was followed by a 1.0 sec delay period. The animals were instructed to choose the longer presented colored stimulus after the second delay period. A total of 498 phasically active neurons were recorded from the striatum, and 269 neurons were defined as task related. Two types of neuronal activity were distinguished during the delay periods. First, the activity gradually changed depending on the duration of the cue presented just before. This activity may represent the signal duration for later comparison between two cue durations. The activity during the second cue period also represented duration of the first cue. Second, the activity changed differently depending on whether the first or second cue was presented longer. This activity may represent discrimination results after the comparison between the two cue durations. These findings support the assumption that striatal neurons represent timing information of sensory signals for duration discrimination.

Keywords: Duration discrimination; monkey; neuronal activity; striatum; time perception.