Long non-coding RNAs (lncRNAs) have been recognized as a regulator of gene expression, and the deregulation of lncRNAs have been reported to be correlated with carcinogenesis and cancer progression. To explore the function of lncRNA in endometrial carcinoma, we analyzed the expression profiles of lncRNAs and coding genes in 3 paired endometrial carcinoma and adjacent non-tumor tissues, using a microarray. The results of microarray analysis indicated a significant difference in lncRNA and coding gene expression between endometrial carcinoma and their paired adjacent non-tumor tissues. A total of 53 lncRNAs (fold change >2.0, p-value <0.05) were found to be differently expressed in endometrial carcinoma compared to the normal controls. Among these ASLNC04080 was the most significantly upregulated lncRNA in microarray data, highly expressed in 22 out of 24 endometrial carcinoma tissues and HEC-1-B cell line. ASLNC04080 is 1867nt in length, consist of 6 exons, and locates at 1 p35.3(chr1: -28905061 - -28909492). In addition, 46 coding gene transcripts were differentially expressed (fold change >2.0, p-value <0.05) between endometrial carcinoma and adjacent non-tumor tissues. Pathway and gene ontology analysis demonstrated that these deregulated transcripts were involved in multiple signal pathways, biological processes, cellular components and molecular functions. Moreover, the ASLNC04080 lncRNA expression was correlated with 19 coding genes, and may contribute to endometrial carcinoma genesis and progression by co-regulating with coding gene. Expression inhibition of lncRNA ASLNC04080 in HEC-1-B cells caused repression of cell proliferation, increased cell apoptosis, and G1 phase arrest. These results suggested a potential function of ASLNC04080 in endometrial carcinoma genesis and progression.