Intricate short-range ordering and strongly anisotropic transport properties of Li(1-x)Sn(2+x)As₂

J Am Chem Soc. 2015 Mar 18;137(10):3622-30. doi: 10.1021/jacs.5b00237. Epub 2015 Mar 4.

Abstract

A new ternary compound, Li(1-x)Sn(2+x)As2, 0.2 < x < 0.4, was synthesized via solid-state reaction of elements. The compound crystallizes in a layered structure in the R3̅m space group (No. 166) with Sn-As layers separated by layers of jointly occupied Li/Sn atoms. The Sn-As layers are comprised of Sn3As3 puckered hexagons in a chair conformation that share all edges. Li/Sn atoms in the interlayer space are surrounded by a regular As6 octahedron. Thorough investigation by synchrotron X-ray and neutron powder diffraction indicate no long-range Li/Sn ordering. In contrast, the local Li/Sn ordering was revealed by synergistic investigations via solid-state (6,7)Li NMR spectroscopy, HRTEM, STEM, and neutron and X-ray pair distribution function analyses. Due to their different chemical natures, Li and Sn atoms tend to segregate into Li-rich and Sn-rich regions, creating substantial inhomogeneity on the nanoscale. The inhomogeneous local structure has a high impact on the physical properties of the synthesized compounds: the local Li/Sn ordering and multiple nanoscale interfaces result in unexpectedly low thermal conductivity and highly anisotropic resistivity in Li(1-x)Sn(2+x)As2.