Objective: The aim of the present study was to develop a fully-automated computational solution for computer-aided diagnosis in Parkinson syndrome based on [(123)I]FP-CIT single photon emission computed tomography (SPECT) images.
Approach: A dataset of 654 [(123)I]FP-CIT SPECT brain images from the Parkinson's Progression Markers Initiative were used. Of these, 445 images were of patients with Parkinson's disease at an early stage and the remainder formed a control group. The images were pre-processed using automated template-based registration followed by the computation of the binding potential at a voxel level. Then, the binding potential images were used for classification, based on the voxel-as-feature approach and using the support vector machines paradigm.
Main results: The obtained estimated classification accuracy was 97.86%, the sensitivity was 97.75% and the specificity 98.09%.
Significance: The achieved classification accuracy was very high and, in fact, higher than accuracies found in previous studies reported in the literature. In addition, results were obtained on a large dataset of early Parkinson's disease subjects. In summation, the information provided by the developed computational solution potentially supports clinical decision-making in nuclear medicine, using important additional information beyond the commonly used uptake ratios and respective statistical comparisons. (ClinicalTrials.gov Identifier: NCT01141023).