Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Feb 24;10(2):e0118139.
doi: 10.1371/journal.pone.0118139. eCollection 2015.

Neonicotinoid insecticide residues in surface water and soil associated with commercial maize (corn) fields in southwestern Ontario

Affiliations

Neonicotinoid insecticide residues in surface water and soil associated with commercial maize (corn) fields in southwestern Ontario

Arthur Schaafsma et al. PLoS One. .

Abstract

Neonicotinoid insecticides have come under scrutiny for their potential unintended effects on non-target organisms, particularly pollinators in agro-ecosystems. As part of a larger study of neonicotinoid residues associated with maize (corn) production, 76 water samples within or around the perimeter of 18 commercial maize fields and neighbouring apiaries were collected in 5 maize-producing counties of southwestern Ontario. Residues of clothianidin (mean = 2.28, max. = 43.60 ng/mL) and thiamethoxam (mean = 1.12, max. = 16.50 ng/mL) were detected in 100 and 98.7% of the water samples tested, respectively. The concentration of total neonicotinoid residues in water within maize fields increased six-fold during the first five weeks after planting, and returned to pre-plant levels seven weeks after planting. However, concentrations in water sampled from outside the fields were similar throughout the sampling period. Soil samples from the top 5 cm of the soil profile were also collected in these fields before and immediately following planting. The mean total neonicotinoid residue was 4.02 (range 0.07 to 20.30) ng/g, for samples taken before planting, and 9.94 (range 0.53 to 38.98) ng/g, for those taken immediately after planting. Two soil samples collected from within an conservation area contained detectable (0.03 and 0.11 ng/g) concentrations of clothianidin. Of three drifted snow samples taken, the drift stratum containing the most wind-scoured soil had 0.16 and 0.20 ng/mL mainly clothianidin in the melted snow. The concentration was at the limit of detection (0.02 ng/mL) taken across the entire vertical profile. With the exception of one sample, water samples tested had concentrations below those reported to have acute, chronic or sublethal effects to honey bees. Our results suggest that neonicotinoids may move off-target by wind erosion of contaminated soil. These results are informative to risk assessment models for other non-target species in maize agro-ecosytems.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: Arthur Schaafsma has read the journal’s policy and the authors of this manuscript have the following competing interests: AS is the stated principal investigator for this study, the other authors with the exception of TB are under the employ and direction of the PI. TB is a former graduate student and now a colleague of AS as Field crop Entomologist for the Ontario Ministry of Agriculture Food and Rural Affairs. There are no patents, products in development or marketed products to declare. This does not alter the authors’ adherence to all PLOS ONE policies on sharing data and materials.

Figures

Fig 1
Fig 1. Map of subject field locations in 2013 (modified from the original by Cartographic Office, Department of Geography, University of Guelph).
1–9: maize fields and bee yards; 10: fields for snow drift samples; 11: blank soil taken.
Fig 2
Fig 2. LC-ESI (+)-MS/MS MRM chromatograms of a soil sample spiked with 0.04 ng/g of clothianidin and thiamethoxam and 1 ng/g clothianidin-d3 and thiamethoxam-d3 internal standards.
Fig 3
Fig 3. Scatter distribution and notched boxplot of water samples collected from the puddles within/around commercial maize fields, ON, 2013.
(1Total of clothianidin and thiamethoxam).
Fig 4
Fig 4. Temporal values of total neonicotinoid concentration (± SEM) for water collected within maize fields compared to samples collected from the puddles outside but in close proximity to these fields.
Different letters indicate significant differences in mean neonicotinoid concentration between sampling periods for water sampled within field. (SAS PROC mixed PDIFF, p = 0.05). (1Total of clothianidin and thiamethoxam).
Fig 5
Fig 5. Concentration (± SEM) of neonicotinoid residues in soils, sampled from commercial maize fields, taken pre- and post-planting in ON, 2013.
Bars with different letters are significantly different (SAS PROC mixed PDIFF, p = 0.05). (1Total of clothianidin and thiamethoxam).

Similar articles

Cited by

References

    1. Kuhar TP, Stivers-Young LJ, Hoffmann MP, Taylor AG (2002) Control of corn flea beetle and Stewart’s wilt in sweet corn with imidacloprid and thiamethoxam seed treatments. Crop Protection 21: 25–31.
    1. Elbert A, Haas M, Springer B, Thielert W, Nauen R (2008) Applied aspects of neonicotinoid uses in crop protection. Pest Management Science 64: 1099–1105. doi: 10.1002/ps.1616 - DOI - PubMed
    1. Hopwood J, Vaughan M, Shepherd M, Biddinger D, Mader E, et al. (2012) Are-neonicotinoids-killing-bees? A review of research into the effects of neonicotinoid insecticides on bees, with recommendations for action: The Xerces Society for Invertebrate Conservation.
    1. Jeschke P, Nauen R, Schindler M, Elbert A (2011) Overview of the status and global strategy for neonicotinoids. Journal of Agricultural and Food Chemistry 59: 2897–2908 doi: 10.1021/jf101303g - DOI - PubMed
    1. Steward G, Baute T (2013) Neonicotinoids and field crop production in Ontario. Available: http://www.omafra.gov.on.ca/english/about/beehealthpresentations/omafcro... Accessed 01 December 2014.

Publication types

MeSH terms

Grants and funding

Funding for this study was provided by the Ontario Ministry of Agriculture Food and Rural Affairs, and by Agriculture and Agri-Food Canada through the Canadian Agricultural Adaptation Program (CAAP) (http://www.agr.gc.ca/eng/?id=1286477571817), administered by the Agricultural Adaptation Council (http://www.adaptcouncil.org/), with the Grain Farmers of Ontario (http://www.gfo.ca/), as the applicant and grant holder and the University of Guelph as the investigators. The authors were asked to independently look for neonicotinoid residues in the maize production ecosystem. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.