Background: Metabolic syndrome is a complex disorder characterized by the presence of insulin resistance (IR), type 2 diabetes mellitus (T2DM), impaired glucose tolerance (IGT), or impaired fasting glucose (IFG), plus at least two of the following conditions--hypertension, hyperlipidemia, obesity, and microalbuminuria. Metabolic syndrome exposes patients to a greater risk of developing cardiovascular disease (CVD) and is often associated with elevated levels of homocysteine (Hcy). In the current work, we analyzed the expression of nicotinamide N-methyltransferase (NNMT). Because NNMT is involved in Hcy metabolism and participates in the regulation of the cellular and plasma levels of this compound, we explored the role played by the enzyme in metabolic syndrome.
Methods: Real-time PCR, immunohistochemistry, western blot analysis, and catalytic activity assay were performed to evaluate NNMT expression levels in adipose tissue from 10 Wistar Ottawa Karlsburg W (WOKW) rats, which are an animal model for metabolic syndrome, and from 10 Dark Agouti (DA) rats as the disease-resistant control strain.
Results: NNMT mRNA, protein, and activity levels were significantly higher in adipose tissue obtained from WOKW rats compared with those observed in adipose tissue of DA rats.
Conclusion: Data reported in this study represent the first evidence supporting the hypothesis that NNMT could play an important role in the pathogenesis of metabolic syndrome and could have a potential for the development of a targeted therapy.