Creation of high-density and low-defect single-layer film of magnetic nanoparticles by the method of interfacial molecular films

Langmuir. 2015 Mar 17;31(10):3254-61. doi: 10.1021/acs.langmuir.5b00241. Epub 2015 Mar 6.

Abstract

A technique to solubilize fine magnetic inorganic particles in general organic solvents is proposed via surfaces modification by long-chain carboxylic acids. This organic modification should overcome the relatively weak van der Waals interactions between the nanoparticles, allowing the formation of ordered arrangements of the modified Fe3O4 and CoFe2O4 materials. Using nanodispersions of these organo-modified magnetic nanoparticles as "spreading solutions", Langmuir monolayers of these particles were formed. Multiparticle layered structures were constructed by the Langmuir-Blodgett (LB) technique. The fabrication of single- and multiparticle layers of organo-modified magnetic nanoparticles was investigated using surface pressure-area (π-A) isotherms, out-of-plane X-ray diffraction (XRD), in-plane XRD, and atomic force microscopy (AFM). The out-of-plane XRD profile of a single-particle layer of organo-modified Fe3O4 clearly showed a sharp peak which was attributed to the distance between Fe3O4 layers along the c-axis. The AFM image of single-particle layer of organo-modified CoFe2O4 revealed integrated particle organization with a uniform height; these aggregated particles formed large two-dimensional crystals. For both nanoparticle species, regular periodic structures along the c-axis and high-density single-particle layers were produced via the Langmuir and LB techniques.