Effect of carboxylic acid side chains on the absorption maximum of visual pigments
- PMID: 2573154
- DOI: 10.1126/science.2573154
Effect of carboxylic acid side chains on the absorption maximum of visual pigments
Abstract
The proposal that the absorption maximum of the visual pigments is governed by interaction of the 11-cis-retinal chromophore with charged carboxylic acid side chains in the membrane-embedded regions of the proteins has been tested by mutating five Asp and Glu residues thought to be buried in rhodopsin. Changing Glu113 to Gln causes a dramatic shift in the absorption maximum from 500 nanometers to 380 nanometers, a decrease in the pKa (acidity constant) of the protonated Schiff base of the chromophore to about 6, and a greatly increased reactivity with hydroxylamine. Thus Glu113 appears to be the counterion to the protonated Schiff base. Wavelength modulation in visual pigments apparently is not governed by electrostatic interaction with carboxylate residues, other than the counterion.
Similar articles
-
Glutamic acid-113 serves as the retinylidene Schiff base counterion in bovine rhodopsin.Proc Natl Acad Sci U S A. 1989 Nov;86(21):8309-13. doi: 10.1073/pnas.86.21.8309. Proc Natl Acad Sci U S A. 1989. PMID: 2573063 Free PMC article.
-
Changing the location of the Schiff base counterion in rhodopsin.Biochemistry. 1992 Oct 27;31(42):10400-5. doi: 10.1021/bi00157a030. Biochemistry. 1992. PMID: 1329948
-
Comparative study on the chromophore binding sites of rod and red-sensitive cone visual pigments by use of synthetic retinal isomers and analogues.Biochemistry. 1990 Mar 27;29(12):3133-40. doi: 10.1021/bi00464a033. Biochemistry. 1990. PMID: 2140051
-
High-resolution structural studies of the retinal--Glu113 interaction in rhodopsin.Biophys Chem. 1995 Sep-Oct;56(1-2):23-9. doi: 10.1016/0301-4622(95)00011-l. Biophys Chem. 1995. PMID: 7662866 Review.
-
Studies of rhodopsin and bacteriorhodopsin using modified retinals.Photochem Photobiol. 1986 Dec;44(6):803-7. doi: 10.1111/j.1751-1097.1986.tb05540.x. Photochem Photobiol. 1986. PMID: 3550831 Review. No abstract available.
Cited by
-
Relocating the active-site lysine in rhodopsin and implications for evolution of retinylidene proteins.Proc Natl Acad Sci U S A. 2013 Aug 13;110(33):13351-5. doi: 10.1073/pnas.1306826110. Epub 2013 Jul 31. Proc Natl Acad Sci U S A. 2013. PMID: 23904486 Free PMC article.
-
Stabilized G protein binding site in the structure of constitutively active metarhodopsin-II.Proc Natl Acad Sci U S A. 2012 Jan 3;109(1):119-24. doi: 10.1073/pnas.1114089108. Epub 2011 Dec 23. Proc Natl Acad Sci U S A. 2012. PMID: 22198838 Free PMC article.
-
Molecular genetics and the evolution of ultraviolet vision in vertebrates.Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):11731-6. doi: 10.1073/pnas.201257398. Proc Natl Acad Sci U S A. 2001. PMID: 11573008 Free PMC article.
-
Light-induced conformational changes of rhodopsin probed by fluorescent alexa594 immobilized on the cytoplasmic surface.Biochemistry. 2000 Dec 12;39(49):15225-33. doi: 10.1021/bi0018685. Biochemistry. 2000. PMID: 11106502 Free PMC article.
-
Adaptive Landscapes in the Age of Synthetic Biology.Mol Biol Evol. 2019 May 1;36(5):890-907. doi: 10.1093/molbev/msz004. Mol Biol Evol. 2019. PMID: 30657938 Free PMC article. Review.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
