Comparing different stimulus configurations for population receptive field mapping in human fMRI
- PMID: 25750620
- PMCID: PMC4335485
- DOI: 10.3389/fnhum.2015.00096
Comparing different stimulus configurations for population receptive field mapping in human fMRI
Abstract
Population receptive field (pRF) mapping is a widely used approach to measuring aggregate human visual receptive field properties by recording non-invasive signals using functional MRI. Despite growing interest, no study to date has systematically investigated the effects of different stimulus configurations on pRF estimates from human visual cortex. Here we compared the effects of three different stimulus configurations on a model-based approach to pRF estimation: size-invariant bars and eccentricity-scaled bars defined in Cartesian coordinates and traveling along the cardinal axes, and a novel simultaneous "wedge and ring" stimulus defined in polar coordinates, systematically covering polar and eccentricity axes. We found that the presence or absence of eccentricity scaling had a significant effect on goodness of fit and pRF size estimates. Further, variability in pRF size estimates was directly influenced by stimulus configuration, particularly for higher visual areas including V5/MT+. Finally, we compared eccentricity estimation between phase-encoded and model-based pRF approaches. We observed a tendency for more peripheral eccentricity estimates using phase-encoded methods, independent of stimulus size. We conclude that both eccentricity scaling and polar rather than Cartesian stimulus configuration are important considerations for optimal experimental design in pRF mapping. While all stimulus configurations produce adequate estimates, simultaneous wedge and ring stimulation produced higher fit reliability, with a significant advantage in reduced acquisition time.
Keywords: fMRI; pRF; population receptive field modeling; primary visual cortex (V1); retinotopy; stimulus design; visual cortex.
Figures
Similar articles
-
Cross-dataset reproducibility of human retinotopic maps.Neuroimage. 2021 Dec 1;244:118609. doi: 10.1016/j.neuroimage.2021.118609. Epub 2021 Sep 25. Neuroimage. 2021. PMID: 34582948 Free PMC article.
-
Combining stimulus types for improved coverage in population receptive field mapping.Neuroimage. 2021 Sep;238:118240. doi: 10.1016/j.neuroimage.2021.118240. Epub 2021 Jun 8. Neuroimage. 2021. PMID: 34116157
-
Radial asymmetries in population receptive field size and cortical magnification factor in early visual cortex.Neuroimage. 2018 Feb 15;167:41-52. doi: 10.1016/j.neuroimage.2017.11.021. Epub 2017 Nov 14. Neuroimage. 2018. PMID: 29155078
-
The Role of Population Receptive Field Sizes in Higher-Order Visual Dysfunction.Curr Neurol Neurosci Rep. 2024 Dec;24(12):611-620. doi: 10.1007/s11910-024-01375-6. Epub 2024 Sep 12. Curr Neurol Neurosci Rep. 2024. PMID: 39266871 Free PMC article. Review.
-
The development and use of phase-encoded functional MRI designs.Neuroimage. 2012 Aug 15;62(2):1195-200. doi: 10.1016/j.neuroimage.2011.09.059. Epub 2011 Oct 1. Neuroimage. 2012. PMID: 21985909 Review.
Cited by
-
Intersession reliability of population receptive field estimates.Neuroimage. 2016 Dec;143:293-303. doi: 10.1016/j.neuroimage.2016.09.013. Epub 2016 Sep 9. Neuroimage. 2016. PMID: 27620984 Free PMC article.
-
Population receptive field tuning properties of visual cortex during childhood.Dev Cogn Neurosci. 2019 Jun;37:100614. doi: 10.1016/j.dcn.2019.01.001. Epub 2019 Jan 8. Dev Cogn Neurosci. 2019. PMID: 30777677 Free PMC article.
-
Cortical idiosyncrasies predict the perception of object size.Nat Commun. 2016 Jun 30;7:12110. doi: 10.1038/ncomms12110. Nat Commun. 2016. PMID: 27357864 Free PMC article.
-
Population Receptive Field Shapes in Early Visual Cortex Are Nearly Circular.J Neurosci. 2021 Mar 17;41(11):2420-2427. doi: 10.1523/JNEUROSCI.3052-20.2021. Epub 2021 Feb 2. J Neurosci. 2021. PMID: 33531414 Free PMC article.
-
Neural correlates of dynamic lightness induction.J Vis. 2024 Sep 3;24(9):10. doi: 10.1167/jov.24.9.10. J Vis. 2024. PMID: 39259170 Free PMC article.
References
-
- Ashburner J., Friston K. J. (1997). Spatial transformation of images, in Human Brain Function, eds Frackowiak R. S., Friston K. J., Frith C. D., Dolan R. J., Mazziotta J. C. (Waltham, MA: Academic Press; ), 43–58.
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
