Integration of published information into a resistance-associated mutation database for Mycobacterium tuberculosis

J Infect Dis. 2015 Apr 1;211 Suppl 2(Suppl 2):S50-7. doi: 10.1093/infdis/jiu816.


Tuberculosis remains a major global public health challenge. Although incidence is decreasing, the proportion of drug-resistant cases is increasing. Technical and operational complexities prevent Mycobacterium tuberculosis drug susceptibility phenotyping in the vast majority of new and retreatment cases. The advent of molecular technologies provides an opportunity to obtain results rapidly as compared to phenotypic culture. However, correlations between genetic mutations and resistance to multiple drugs have not been systematically evaluated. Molecular testing of M. tuberculosis sampled from a typical patient continues to provide a partial picture of drug resistance. A database of phenotypic and genotypic testing results, especially where prospectively collected, could document statistically significant associations and may reveal new, predictive molecular patterns. We examine the feasibility of integrating existing molecular and phenotypic drug susceptibility data to identify associations observed across multiple studies and demonstrate potential for well-integrated M. tuberculosis mutation data to reveal actionable findings.

Keywords: database; drug resistance; drug susceptibility testing; genomic sequencing; resistance-associated mutations; tuberculosis.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Antitubercular Agents / pharmacology*
  • Antitubercular Agents / therapeutic use
  • Databases, Genetic*
  • Drug Resistance, Bacterial*
  • Genotype
  • Humans
  • Mutation*
  • Mycobacterium tuberculosis / drug effects*
  • Mycobacterium tuberculosis / genetics*
  • Tuberculosis / diagnosis
  • Tuberculosis / drug therapy
  • Tuberculosis / microbiology


  • Antitubercular Agents