Targeted correction and restored function of the CFTR gene in cystic fibrosis induced pluripotent stem cells

Stem Cell Reports. 2015 Apr 14;4(4):569-77. doi: 10.1016/j.stemcr.2015.02.005. Epub 2015 Mar 12.

Abstract

Recently developed reprogramming and genome editing technologies make possible the derivation of corrected patient-specific pluripotent stem cell sources-potentially useful for the development of new therapeutic approaches. Starting with skin fibroblasts from patients diagnosed with cystic fibrosis, we derived and characterized induced pluripotent stem cell (iPSC) lines. We then utilized zinc-finger nucleases (ZFNs), designed to target the endogenous CFTR gene, to mediate correction of the inherited genetic mutation in these patient-derived lines via homology-directed repair (HDR). We observed an exquisitely sensitive, homology-dependent preference for targeting one CFTR allele versus the other. The corrected cystic fibrosis iPSCs, when induced to differentiate in vitro, expressed the corrected CFTR gene; importantly, CFTR correction resulted in restored expression of the mature CFTR glycoprotein and restoration of CFTR chloride channel function in iPSC-derived epithelial cells.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alleles
  • Cell Differentiation / genetics
  • Cell Line
  • Cells, Cultured
  • Cystic Fibrosis / genetics*
  • Cystic Fibrosis / metabolism*
  • Cystic Fibrosis Transmembrane Conductance Regulator / genetics*
  • Cystic Fibrosis Transmembrane Conductance Regulator / metabolism*
  • Endonucleases / genetics
  • Endonucleases / metabolism
  • Gene Expression
  • Gene Targeting* / methods
  • Genetic Vectors / genetics
  • Genotype
  • Homologous Recombination
  • Humans
  • Induced Pluripotent Stem Cells / cytology
  • Induced Pluripotent Stem Cells / metabolism*
  • Mutation
  • Recombinational DNA Repair
  • Sequence Analysis, DNA
  • Zinc Fingers / genetics

Substances

  • Cystic Fibrosis Transmembrane Conductance Regulator
  • Endonucleases