Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
, 156 (6), 2074-86

Activation of Transient Receptor Potential Vanilloid 3 Channel Suppresses Adipogenesis

Affiliations

Activation of Transient Receptor Potential Vanilloid 3 Channel Suppresses Adipogenesis

Sin Ying Cheung et al. Endocrinology.

Abstract

The present study shows that activation of the transient receptor potential vanilloid 3 channel (TRPV3) suppresses adipocyte differentiation. We also found that a major functional catechin compound in green tea and cocoa, (-)-epicatechin, exerts antiadipogenic effects in the adipocytes through direct activation of TRPV3. TRPV3 was detected in the 3T3-L1 adipocytes using immunohistochemistry and semiquantitative PCR. TRPV3 activation by activators (-)-epicatechin and diphenylborinic anhydride was determined using live cell fluorescent Ca(2+) imaging and patch-clamp electrophysiology. Using RNA interference, immunoblotting, and Oil red O staining, we found that the TRPV3 agonists prevented adipogenesis by inhibiting the phosphorylation of insulin receptor substrate 1, the downstream phosphoinositide 3-kinase/Akt/forkhead box protein O1 axis, and the expression of the adipogenic genes peroxisome proliferator-activated receptor γ and CCAAT/enhancer-binding protein α. TRPV3 overexpression hindered adipogenesis in the 3T3-L1 cells. In vivo studies showed that chronic treatment with the TRPV3 activators prevented adipogenesis and weight gain in the mice fed on high-fat diets. Moreover, TRPV3 expression was reduced in the visceral adipose tissue from mice fed on high-fat diets and obese (ob/ob) and diabetic (db/m(+)) mice. In conclusion, our study illustrates the antiadipogenic role of TRPV3 in the adipocytes.

Similar articles

See all similar articles

Cited by 13 PubMed Central articles

See all "Cited by" articles

Publication types

Feedback