Proportionality: a valid alternative to correlation for relative data
- PMID: 25775355
- PMCID: PMC4361748
- DOI: 10.1371/journal.pcbi.1004075
Proportionality: a valid alternative to correlation for relative data
Abstract
In the life sciences, many measurement methods yield only the relative abundances of different components in a sample. With such relative-or compositional-data, differential expression needs careful interpretation, and correlation-a statistical workhorse for analyzing pairwise relationships-is an inappropriate measure of association. Using yeast gene expression data we show how correlation can be misleading and present proportionality as a valid alternative for relative data. We show how the strength of proportionality between two variables can be meaningfully and interpretably described by a new statistic ϕ which can be used instead of correlation as the basis of familiar analyses and visualisation methods, including co-expression networks and clustered heatmaps. While the main aim of this study is to present proportionality as a means to analyse relative data, it also raises intriguing questions about the molecular mechanisms underlying the proportional regulation of a range of yeast genes.
Conflict of interest statement
The authors have declared that no competing interests exist.
Figures
Similar articles
-
propr: An R-package for Identifying Proportionally Abundant Features Using Compositional Data Analysis.Sci Rep. 2017 Nov 24;7(1):16252. doi: 10.1038/s41598-017-16520-0. Sci Rep. 2017. PMID: 29176663 Free PMC article.
-
How should we measure proportionality on relative gene expression data?Theory Biosci. 2016 Jun;135(1-2):21-36. doi: 10.1007/s12064-015-0220-8. Epub 2016 Jan 13. Theory Biosci. 2016. PMID: 26762323 Free PMC article.
-
Regulation of ribosome synthesis in yeast.Yeast. 1997 Dec;13(16):1505-18. doi: 10.1002/(SICI)1097-0061(199712)13:16<1505::AID-YEA229>3.0.CO;2-I. Yeast. 1997. PMID: 9509571 Review. No abstract available.
-
Defining transcriptional networks through integrative modeling of mRNA expression and transcription factor binding data.BMC Bioinformatics. 2004 Mar 18;5:31. doi: 10.1186/1471-2105-5-31. BMC Bioinformatics. 2004. PMID: 15113405 Free PMC article.
-
A genomic view of mRNA turnover in yeast.C R Biol. 2011 Aug-Sep;334(8-9):647-54. doi: 10.1016/j.crvi.2011.05.013. Epub 2011 Jul 5. C R Biol. 2011. PMID: 21819946 Review.
Cited by
-
Metatranscriptomic analyses reveal ruminal pH regulates fiber degradation and fermentation by shifting the microbial community and gene expression of carbohydrate-active enzymes.Anim Microbiome. 2021 Apr 23;3(1):32. doi: 10.1186/s42523-021-00092-6. Anim Microbiome. 2021. PMID: 33892824 Free PMC article.
-
RapMap: a rapid, sensitive and accurate tool for mapping RNA-seq reads to transcriptomes.Bioinformatics. 2016 Jun 15;32(12):i192-i200. doi: 10.1093/bioinformatics/btw277. Bioinformatics. 2016. PMID: 27307617 Free PMC article.
-
Understanding sequencing data as compositions: an outlook and review.Bioinformatics. 2018 Aug 15;34(16):2870-2878. doi: 10.1093/bioinformatics/bty175. Bioinformatics. 2018. PMID: 29608657 Free PMC article. Review.
-
Diverse patterns of correspondence between protist metabarcodes and protist metagenome-assembled genomes.PLoS One. 2024 Jun 6;19(6):e0303697. doi: 10.1371/journal.pone.0303697. eCollection 2024. PLoS One. 2024. PMID: 38843225 Free PMC article.
-
Cohesion: a method for quantifying the connectivity of microbial communities.ISME J. 2017 Nov;11(11):2426-2438. doi: 10.1038/ismej.2017.91. Epub 2017 Jul 21. ISME J. 2017. PMID: 28731477 Free PMC article.
References
-
- van de Peppel J, Kemmeren P, van Bakel H, Radonjic M, van Leenen D, et al. (2003) Monitoring global messenger RNA changes in externally controlled microarray experiments. EMBO Reports 4: 387–393. doi: 10.1038/sj.embor.embor798 - DOI - PMC - PubMed
-
- Faust K, Sathirapongsasuti JF, Izard J, Segata N, Gevers D, et al. (2012) Microbial co-occurrence relationships in the human microbiome. PLoS Comput Biol 8: e1002606 doi: 10.1371/journal.pcbi.1002606 - DOI - PMC - PubMed
-
- Friedman J, Alm EJ (2012) Inferring correlation networks from genomic survey data. PLoS Comput Biol 8: e1002687 doi: 10.1371/journal.pcbi.1002687 - DOI - PMC - PubMed
-
- Aitchison J (1986) The statistical analysis of compositional data. Chapman & Hall, Ltd; doi: 10.1007/978-94-009-4109-0 - DOI
-
- Pearson K (1897) Mathematical contributions to the theory of evolution—on a form of spurious correlation which may arise when indices are used in the measurement of organs. Proceedings of the Royal Society of London 60 doi: 10.1098/rspl.1896.0076 - DOI
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
