Lignin biosynthesis is regulated by many transcription factors, such as those of the MYB and NAC families. However, the roles of AP2/ERF transcription factors in lignin biosynthesis have been rarely investigated. Eighteen EjAP2/ERF genes were isolated from loquat fruit (Eriobotrya japonica), which undergoes postharvest lignification during low temperature storage. Among these, expression of EjAP2-1, a transcriptional repressor, was negatively correlated with fruit lignification. The dual-luciferase assay indicated that EjAP2-1 could trans-repress activities of promoters of lignin biosynthesis genes from both Arabidopsis and loquat. However, EjAP2-1 did not interact with the target promoters (Ej4CL1). Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays indicated protein-protein interactions between EjAP2-1 and lignin biosynthesis-related EjMYB1 and EjMYB2. Furthermore, repression effects on the Ej4CL1 promoter were observed with the combination of EjAP2-1 and EjMYB1 or EjMYB2, while EjAP2-1 with the EAR motif mutated (mEjAP2-1) lost such repression, although mEjAP2-1 still interacted with EjMYB protein. Based on these results, it is proposed that EjAP2-1 is an indirect transcriptional repressor on lignin biosynthesis, and the repression effects were manifested by EAR motifs and were conducted via protein-protein interaction with EjMYBs.
Keywords: AP2-MYB complex; AP2/ERF; chilling injury; lignification; lignin; loquat fruit.
© 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.