Polyploid tissues in the nematode Caenorhabditis elegans

Dev Biol. 1985 Jan;107(1):128-33. doi: 10.1016/0012-1606(85)90381-1.


During larval development, the number of somatic nuclei in C. elegans hermaphrodites increases from 558 to 959 (J. E. Sulston and H. R. Horvitz, Dev. Biol. 56, 110-156, 1977; J. E. Sulston et al., Dev. Biol. 100, 64-119, 1983). At the same time, the animals increase about 60-fold in volume. We have measured the DNA contents of several classes of nuclei by quantitating the fluorescence of Hoescht 33258 stained DNA (D. G. Albertson et al., Dev. Biol. 63, 165-178, 1978). Probably all embryonic nuclei, including those of neurons, muscles, hypodermis, and intestine, are diploid at hatching. Neurons, muscles, and nondividing hypodermal nuclei remain diploid throughout larval development. The DNA content of the intestinal nuclei doubles at the end of each larval stage, reaching 32C by the adult stage. New hypodermal cells, generated by division of seam cells in the larval stages, undergo an additional round of DNA replication before fusing with the major syncytium (hyp7, Sulston et al., 1983). Thus the larval hyp7 syncytium comprises a fixed number of diploid embryonic nuclei plus an increasing number of tetraploid postembryonic nuclei. Some of the endoreduplications that occur in the intestinal and hypodermal lineages of C. elegans may correspond to nuclear or cellular divisions in another nematode Panagrellus redivivus (P. W. Sternberg and H. R. Horvitz, Dev. Biol. 93, 181-205, 1982).

MeSH terms

  • Animals
  • Bisbenzimidazole
  • Caenorhabditis / anatomy & histology
  • Caenorhabditis / cytology*
  • Cell Division
  • Cell Nucleus / physiology
  • DNA / analysis
  • Intestines / cytology


  • DNA
  • Bisbenzimidazole