Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 May;58(4):470-8.
doi: 10.1111/jpi.12232. Epub 2015 Apr 2.

Coordinated regulation of melatonin synthesis and degradation genes in rice leaves in response to cadmium treatment

Affiliations

Coordinated regulation of melatonin synthesis and degradation genes in rice leaves in response to cadmium treatment

Yeong Byeon et al. J Pineal Res. 2015 May.

Abstract

We investigated the expression patterns of genes involved in melatonin synthesis and degradation in rice leaves upon cadmium (Cd) treatment and the subcellular localization sites of melatonin 2-hydroxylase (M2H) proteins. The Cd-induced synthesis of melatonin coincided with the increased expression of melatonin biosynthetic genes including tryptophan decarboxylase (TDC), tryptamine 5-hydroxylase (T5H), and N-acetylserotonin methyltransferase (ASMT). However, the expression of serotonin N-acetyltransferase (SNAT), the penultimate gene in melatonin biosynthesis, was downregulated, suggesting that melatonin synthesis was counter-regulated by SNAT. Notably, the induction of melatonin biosynthetic gene expression was coupled with the induction of four M2H genes involved in melatonin degradation, which suggests that genes for melatonin synthesis and degradation are coordinately regulated. The induced M2H gene expression was correlated with enhanced M2H enzyme activity. Three of the M2H proteins were localized to the cytoplasm and one M2H protein was localized to chloroplasts, indicating that melatonin degradation occurs both in the cytoplasm and in chloroplasts. The biological activity of 2-hydroxymelatonin in the induction of the plant defense gene expression was 50% less than that of melatonin, which indicates that 2-hydroxymelatonin may be a metabolite of melatonin. Overall, our data demonstrate that melatonin synthesis occurs in parallel with melatonin degradation in both chloroplasts and cytoplasm, and the resulting melatonin metabolite 2-hydroxymelatonin also acts as a signaling molecule for defense gene induction.

Keywords: 2-hydroxymelatonin; 2-oxoglutarate-dependent dioxygenases; cadmium; melatonin 2-hydroxygenase; subcellular localization.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources