Some of the most productive metabolic engineering strategies involve genetic modifications that cause severe metabolic burden on the host cell. Growth-limiting genetic modifications can be more effective if they are 'switched on' after a population growth phase has been completed. To address this problem we have engineered dynamic regulation using a previously developed synthetic quorum sensing circuit in Saccharomyces cerevisiae. The circuit autonomously triggers gene expression at a high population density, and was linked with an RNA interference module to enable target gene silencing. As a demonstration the circuit was used to control flux through the shikimate pathway for the production of para-hydroxybenzoic acid (PHBA). Dynamic RNA repression allowed gene knock-downs which were identified by elementary flux mode analysis as highly productive but with low biomass formation to be implemented after a population growth phase, resulting in the highest published PHBA titer in yeast (1.1mM).
Keywords: Cell–cell communication; Dynamic regulation; PHBA; Quorum sensing; RNA interference; Shikimate pathway.
Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.