A 2.95 GHz, femtosecond passive harmonic mode-locked fiber laser based on evanescent field interaction with topological insulator film

Opt Express. 2015 Jan 12;23(1):154-64. doi: 10.1364/OE.23.000154.

Abstract

By utilizing the pulsed laser deposition (PLD) method, we fabricated a kind of microfiber-based topological insulator (TI) saturable absorber (SA) which has inherent merits of effective and robust properties. We also proposed a newly explanation for the impact of nonlinear effect of SA on the harmonic mode-locking (HML) behavior. Upon employing on the SA, we achieved stable fundamental mode-locking (FML) at central wavelength of 1562.4 nm with pulse duration as short as 320 fs. By adjusting the intracavity polarization state at maximum pump power of 395 mW, we obtained stable femtosecond harmonic soliton pulse generation with repetition rate of 2.95 GHz and output power of 45.3 mW. Our results demonstrated that the microfiber-based TI PLD film SA is a promising device for practical multi-GHz ultrashort pulses generation.