Schizophrenia detection and classification by advanced analysis of EEG recordings using a single electrode approach

PLoS One. 2015 Apr 2;10(4):e0123033. doi: 10.1371/journal.pone.0123033. eCollection 2015.

Abstract

Electroencephalographic (EEG) analysis has emerged as a powerful tool for brain state interpretation and diagnosis, but not for the diagnosis of mental disorders; this may be explained by its low spatial resolution or depth sensitivity. This paper concerns the diagnosis of schizophrenia using EEG, which currently suffers from several cardinal problems: it heavily depends on assumptions, conditions and prior knowledge regarding the patient. Additionally, the diagnostic experiments take hours, and the accuracy of the analysis is low or unreliable. This article presents the "TFFO" (Time-Frequency transformation followed by Feature-Optimization), a novel approach for schizophrenia detection showing great success in classification accuracy with no false positives. The methodology is designed for single electrode recording, and it attempts to make the data acquisition process feasible and quick for most patients.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms
  • Brain / physiology*
  • Brain Waves / physiology*
  • Electrodes
  • Electroencephalography / methods*
  • Humans
  • Schizophrenia / diagnosis*
  • Schizophrenia / physiopathology*
  • Severity of Illness Index
  • Signal Processing, Computer-Assisted

Grant support

The authors have no support or funding to report.