Cofactor specificity motifs and the induced fit mechanism in class I ketol-acid reductoisomerases

Biochem J. 2015 Jun 15;468(3):475-84. doi: 10.1042/BJ20150183. Epub 2015 Apr 7.

Abstract

Although most sequenced members of the industrially important ketol-acid reductoisomerase (KARI) family are class I enzymes, structural studies to date have focused primarily on the class II KARIs, which arose through domain duplication. In the present study, we present five new crystal structures of class I KARIs. These include the first structure of a KARI with a six-residue β2αB (cofactor specificity determining) loop and an NADPH phosphate-binding geometry distinct from that of the seven- and 12-residue loops. We also present the first structures of naturally occurring KARIs that utilize NADH as cofactor. These results show insertions in the specificity loops that confounded previous attempts to classify them according to loop length. Lastly, we explore the conformational changes that occur in class I KARIs upon binding of cofactor and metal ions. The class I KARI structures indicate that the active sites close upon binding NAD(P)H, similar to what is observed in the class II KARIs of rice and spinach and different from the opening of the active site observed in the class II KARI of Escherichia coli. This conformational change involves a decrease in the bending of the helix that runs between the domains and a rearrangement of the nicotinamide-binding site.

Keywords: acetohydroxyacid isomeroreductase (AHAIR); cofactor binding; conformational change; crystal structure; ketol-acid reductoisomerase (KARI).

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenosine Diphosphate Ribose / analogs & derivatives
  • Adenosine Diphosphate Ribose / chemistry
  • Adenosine Diphosphate Ribose / metabolism
  • Alicyclobacillus / enzymology*
  • Amino Acid Sequence
  • Azotobacter vinelandii / enzymology*
  • Bacterial Proteins / chemistry
  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism*
  • Binding Sites
  • Catalytic Domain
  • Coenzymes / chemistry
  • Coenzymes / metabolism*
  • Crystallography, X-Ray
  • Desulfurococcaceae / enzymology*
  • Ketol-Acid Reductoisomerase / chemistry
  • Ketol-Acid Reductoisomerase / genetics
  • Ketol-Acid Reductoisomerase / metabolism*
  • Magnesium / chemistry
  • Magnesium / metabolism
  • Models, Molecular*
  • Molecular Conformation
  • Molecular Sequence Data
  • Mutant Proteins / chemistry
  • Mutant Proteins / metabolism
  • NAD / chemistry
  • NAD / metabolism
  • NADP / chemistry
  • NADP / metabolism
  • Phosphorylation
  • Protein Folding
  • Recombinant Proteins / chemistry
  • Recombinant Proteins / metabolism
  • Sequence Alignment

Substances

  • Bacterial Proteins
  • Coenzymes
  • Mutant Proteins
  • Recombinant Proteins
  • NAD
  • Adenosine Diphosphate Ribose
  • NADP
  • Ketol-Acid Reductoisomerase
  • Magnesium

Associated data

  • PDB/4TSK
  • PDB/4XDY
  • PDB/4XDZ
  • PDB/4XEH
  • PDB/4XIY