High-throughput functional genomics using CRISPR-Cas9
- PMID: 25854182
- PMCID: PMC4503232
- DOI: 10.1038/nrg3899
High-throughput functional genomics using CRISPR-Cas9
Abstract
Forward genetic screens are powerful tools for the discovery and functional annotation of genetic elements. Recently, the RNA-guided CRISPR (clustered regularly interspaced short palindromic repeat)-associated Cas9 nuclease has been combined with genome-scale guide RNA libraries for unbiased, phenotypic screening. In this Review, we describe recent advances using Cas9 for genome-scale screens, including knockout approaches that inactivate genomic loci and strategies that modulate transcriptional activity. We discuss practical aspects of screen design, provide comparisons with RNA interference (RNAi) screening, and outline future applications and challenges.
Figures
Comment in
-
Genetic screens: Combination screens for combination therapies.Nat Rev Genet. 2016 Jun;17(6):313. doi: 10.1038/nrg.2016.52. Epub 2016 Apr 12. Nat Rev Genet. 2016. PMID: 27067263 No abstract available.
Similar articles
-
Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening.Nat Protoc. 2017 Apr;12(4):828-863. doi: 10.1038/nprot.2017.016. Epub 2017 Mar 23. Nat Protoc. 2017. PMID: 28333914 Free PMC article.
-
A Perspective on the Future of High-Throughput RNAi Screening: Will CRISPR Cut Out the Competition or Can RNAi Help Guide the Way?J Biomol Screen. 2015 Sep;20(8):1040-51. doi: 10.1177/1087057115590069. Epub 2015 Jun 5. J Biomol Screen. 2015. PMID: 26048892 Review.
-
Pooled Lentiviral CRISPR-Cas9 Screens for Functional Genomics in Mammalian Cells.Methods Mol Biol. 2019;1869:169-188. doi: 10.1007/978-1-4939-8805-1_15. Methods Mol Biol. 2019. PMID: 30324523
-
Adapting CRISPR/Cas9 for functional genomics screens.Methods Enzymol. 2014;546:193-213. doi: 10.1016/B978-0-12-801185-0.00010-6. Methods Enzymol. 2014. PMID: 25398342
-
Design, execution, and analysis of pooled in vitro CRISPR/Cas9 screens.FEBS J. 2016 Sep;283(17):3170-80. doi: 10.1111/febs.13770. Epub 2016 Jun 16. FEBS J. 2016. PMID: 27250066 Review.
Cited by
-
Developing benzylisoquinoline alkaloid-enriched opium poppy via CRISPR-directed genome editing: A review.BMC Plant Biol. 2024 Jul 24;24(1):700. doi: 10.1186/s12870-024-05412-x. BMC Plant Biol. 2024. PMID: 39048937 Free PMC article. Review.
-
CRISPR/Cas9 Landscape: Current State and Future Perspectives.Int J Mol Sci. 2023 Nov 8;24(22):16077. doi: 10.3390/ijms242216077. Int J Mol Sci. 2023. PMID: 38003266 Free PMC article. Review.
-
Genomic Diversity Illuminates the Environmental Adaptation of Drosophila suzukii.Genome Biol Evol. 2024 Sep 3;16(9):evae195. doi: 10.1093/gbe/evae195. Genome Biol Evol. 2024. PMID: 39235033 Free PMC article.
-
Increasing the performance of pooled CRISPR-Cas9 drop-out screening.Sci Rep. 2016 Aug 22;6:31782. doi: 10.1038/srep31782. Sci Rep. 2016. PMID: 27545104 Free PMC article.
-
Engineering megabase-sized genomic deletions with MACHETE (Molecular Alteration of Chromosomes with Engineered Tandem Elements).Nat Protoc. 2024 May;19(5):1381-1399. doi: 10.1038/s41596-024-00953-9. Epub 2024 Feb 7. Nat Protoc. 2024. PMID: 38326496 Free PMC article.
References
-
- Boutros M, Ahringer J. The art and design of genetic screens: RNA interference. Nature Rev. Genet. 2008;9:554–566. - PubMed
-
- Kile BT, Hilton DJ. The art and design of genetic screens: mouse. Nature Rev. Genet. 2005;6:557–567. - PubMed
-
- Grimm S. The art and design of genetic screens: mammalian culture cells. Nature Rev. Genet. 2004;5:179–189. - PubMed
-
- Jorgensen EM, Mango SE. The art and design of genetic screens: Caenorhabditis elegans. Nature Rev. Genet. 2002;3:356–369. - PubMed
-
- St Johnston D. The art and design of genetic screens: Drosophila melanogaster. Nature Rev. Genet. 2002;3:176–188. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
