Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Apr 9;10(4):e0124082.
doi: 10.1371/journal.pone.0124082. eCollection 2015.

Respiratory syncytial virus fusion protein promotes TLR-4-dependent neutrophil extracellular trap formation by human neutrophils

Affiliations
Free PMC article

Respiratory syncytial virus fusion protein promotes TLR-4-dependent neutrophil extracellular trap formation by human neutrophils

Giselle A Funchal et al. PLoS One. .
Free PMC article

Abstract

Acute viral bronchiolitis by Respiratory Syncytial Virus (RSV) is the most common respiratory illness in children in the first year of life. RSV bronchiolitis generates large numbers of hospitalizations and an important burden to health systems. Neutrophils and their products are present in the airways of RSV-infected patients who developed increased lung disease. Neutrophil Extracellular Traps (NETs) are formed by the release of granular and nuclear contents of neutrophils in the extracellular space in response to different stimuli and recent studies have proposed a role for NETs in viral infections. In this study, we show that RSV particles and RSV Fusion protein were both capable of inducing NET formation by human neutrophils. Moreover, we analyzed the mechanisms involved in RSV Fusion protein-induced NET formation. RSV F protein was able to induce NET release in a concentration-dependent fashion with both neutrophil elastase and myeloperoxidase expressed on DNA fibers and F protein-induced NETs was dismantled by DNase treatment, confirming that their backbone is chromatin. This viral protein caused the release of extracellular DNA dependent on TLR-4 activation, NADPH Oxidase-derived ROS production and ERK and p38 MAPK phosphorylation. Together, these results demonstrate a coordinated signaling pathway activated by F protein that led to NET production. The massive production of NETs in RSV infection could aggravate the inflammatory symptoms of the infection in young children and babies. We propose that targeting the binding of TLR-4 by F protein could potentially lead to novel therapeutic approaches to help control RSV-induced inflammatory consequences and pathology of viral bronchiolitis.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: Co-author Cristina Bonorino is a PLOS ONE Editorial Board member. This does not alter the authors' adherence to PLOS ONE Editorial policies and criteria.

Figures

Fig 1
Fig 1. RSV particles and RSV Fusion protein induce NET formation.
(A) Human neutrophils (2 x 106/mL) were stimulated with RSV (102–104 PFU/mL) or left unstimulated for 3 h at 37°C with 5% CO2. (B) Neutrophils (2 x 106/mL) were stimulated with RSV F protein (0.1–5 μg/mL), PMA (100 nM) or medium alone for 3 h at 37°C with 5% CO2. NETs were quantified in culture supernatants using Quant-iT dsDNA HS kit. Data are representative of at least 3 independent experiments performed in triplicates and represent mean ± SEM. *p<0.05; **p<0.01; ***p<0.001 when compared to negative control (NCtrl). (C-F) Neutrophils (2 x 105/300 μL) were stimulated with (C) medium, (D) LPS (100 ng/mL), (E) PMA (100 nM) or (F) F protein (1 μg/mL) for 3 h at 37°C with 5% CO2. Cells were then fixed with 4% PFA and stained with Hoechst 33342 (1:2000). Images are representative of at least 4 independent experiments. (G-L) Neutrophils (2 x 105/300 μL) were stimulated with F protein (1 μg/mL) for 3 h at 37°C with 5% CO2. Cells were fixed with 4% PFA and stained with: (G-I) Hoechst 33342 (1:2000), anti-elastase (1:1000), followed by anti-rabbit Cy3 (1:500) antibodies; (J-L) Hoechst 33342 (1:2000), anti-myeloperoxidase PE (1:1000) antibody. Overlay of the fluorescence images are shown in the last panels (I,L). Images are representative of 2 independent experiments. Images were taken in a Zeiss LSM 5 Exciter microscope. Scale bars = 50 μm.
Fig 2
Fig 2. Effect of different treatments on F protein-induced NETs generation.
Human neutrophils (2 x 106/mL) were stimulated with: (A) F protein (1 μg/mL) or LPS (100 ng/mL) in the presence or absence of DNase-1 (100U/mL); (B) F protein (1 μg/mL) or LPS (100 ng/mL) in the presence or absence of polymyxin B (Pmx B, 1 μg/mL); (C) F protein (1 μg/mL), boiled F protein (1 μg/mL, 10 min at 100°C) or F protein (1 μg/mL) treated with proteinase K (1 mg/mL for 90 min) for 3 h at 37°C with 5% CO2. (D) F protein solution was treated with monoclonal anti-F protein (10 μg/mL) or isotype-matched (10 μg/mL) antibody and neutrophils (2 x 106/mL) were stimulated with these preparations for 3 h at 37°C with 5% CO2. NETs were quantified in culture supernatants using Quant-iT dsDNA HS kit. Data are representative of at least 2 independent experiments performed in triplicates and represent mean ± SEM. *p<0.05; ***p<0.001 when compared to negative control (NCtrl); #p<0.05 when compared to LPS- or F protein-treated cells.
Fig 3
Fig 3. F protein-induced NET formation is dependent on TLR-4 activation.
(A) Human neutrophils (2 x 106/mL) were pretreated with monoclonal anti-TLR4 (10 μg/mL) or isotype-matched (10 μg/mL) antibody for 1 h and stimulated with F protein (1 μg/mL) or medium for 3 h at 37°C with 5% CO2. NETs were quantified in culture supernatants using Quant-iT dsDNA HS kit. Data are representative of at least 3 separate experiments performed in triplicates and represent mean ± SEM. *p<0.001 when compared to negative control (NCtrl); #p<0.05 when compared to F protein-treated cells. (B) Neutrophils (2 x 105/300 μL) were pretreated with anti-TLR4 (10 μg/mL) for 1 h at 37°C with 5% CO2 and stimulated with F protein (1 μg/mL) or medium for 3 h at 37°C with 5% CO2. Cells were fixed with 4% PFA and stained with Hoechst 33342 (1:2000). Confocal images were taken in a Zeiss LSM 5 Exciter microscope. Image is representative of 2 independent experiments. Scale bars = 50 μm.
Fig 4
Fig 4. Essential role for NADPH Oxidase-derived ROS on F protein-induced NET generation.
(A,C) Neutrophils (2 x 106/mL) were pretreated with NAC (1 mM) or DPI (10 μM) for 1 h and stimulated with F protein (1 μg/mL) for 3 h at 37°C with 5% CO2. NETs were quantified in culture supernatants using Quant-iT dsDNA HS kit. Data are representative of 3 separate experiments performed in triplicates and represent mean ± SEM. ***p<0.001 when compared to negative control (NCtrl); #p<0.001 when compared to F protein-treated cells. (B,D) Neutrophils (2 x 106/microtube) were pretreated with NAC (1 mM) or DPI (10 μM) for 1 h, stimulated with F protein (1 μg/mL) for 1 h at 37°C with 5% CO2 and incubated with 0.5 μM CM-H2DCFDA for 30 min. ROS generation was analyzed by flow cytometry using FACSCanto II flow cytometer. Neutrophils gate was based on FSC x SSC distribution. Data are representative of 2 independent experiments performed in triplicates with similar results.
Fig 5
Fig 5. F protein activates ERK and p38 MAPK to induce NET formation.
(A,B) Neutrophils (2 x 106/mL) were pretreated with PD98059 (30 μM) or SB203580 (10 μM) for 1 h and stimulated with F protein (1 μg/mL) for 3 h at 37°C with 5% CO2. NETs were quantified in culture supernatants using Quant-iT dsDNA HS kit. Data are representative of 3 separate experiments performed in triplicates and represent mean ± SEM. ***p<0.001 when compared to negative control (NCtrl); #p<0.001 when compared to F protein-treated cells. (C,D) Neutrophils (1 x 106/mL) were stimulated with F protein (1 μg/mL) for 5 min at 37°C with 5% CO2 and stained for phosphorylated proteins (ERK 1/2 and p38 MAPK), according to Materials and Methods. Proteins phosphorylation was analyzed by flow cytometry using FACSCanto II flow cytometer. Neutrophils gate was based on FSC x SSC distribution. Phosphorylation of protein pathways are presented as fold increase relative to unstimulated neutrophils (NCtrl). Data are representative of 2 separate experiments with similar results.
Fig 6
Fig 6. Mechanisms involved in RSV Fusion protein-induced NET formation in human neutrophils.
(I) RSV F protein binds to and activates TLR-4, expressed by neutrophils, stimulating ROS production via NADPH Oxidase, which is essential for NET formation. (II) F protein is also able to activate ERK and p38 MAPK to induce NET release. RSV F protein stimulates the production of NETs decorated with the granular proteins NE and MPO.

Similar articles

Cited by

References

    1. Stott EJ, Taylor G. Respiratory syncytial virus. Brief review. Arch Virol. 1985;84(1–2): 1–52. - PubMed
    1. Welliver RC. Review of epidemiology and clinical risk factors for severe respiratory syncytial virus (RSV) infection. J Pediatr. 2003;143: S112–7. - PubMed
    1. Mejías A, Chávez-Bueno S, Jafri HS, Ramilo O. Respiratory syncytial virus infections: old challenges and new opportunities. Pediatr Infect Dis J. 2005;24: S189–S197. - PubMed
    1. Bueno SM, González PA, Pacheco R, Leiva ED, Cautivo KM, Tobar HE, et al. Host immunity during RSV pathogenesis. Int Immunopharmacol. 2008;8(10): 1320–9. 10.1016/j.intimp.2008.03.012 - DOI - PubMed
    1. Kahn JS, Schnell MJ, Buonocore L, Rose JK. Recombinant vesicular stomatitis virus expressing respiratory syncytial virus (RSV) glycoproteins: RSV fusion protein can mediate infection and cell fusion. Virology. 1999;254(1): 81–91. - PubMed

Publication types

Grants and funding

This study was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) grant nr. 472406/2010-8, and Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS) grant nr. 11/1904-1. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.