Limited sampling strategy and target attainment analysis for levofloxacin in patients with tuberculosis

Antimicrob Agents Chemother. 2015 Jul;59(7):3800-7. doi: 10.1128/AAC.00341-15. Epub 2015 Apr 13.


There is an urgent need to improve and shorten the treatment of tuberculosis (TB) and multidrug resistant tuberculosis (MDR-TB). Levofloxacin, a newer fluoroquinolone, has potent activity against TB both in vitro and in vivo. Levofloxacin dosing can be optimized to improve the treatment of both TB and MDR-TB. Levofloxacin efficacy is linked primarily to the ratio of the area under the concentration-time curve for the free fraction of drug (fAUC) to the MIC. Since obtaining a full-time concentration profile is not feasible in the clinic, we developed a limited sampling strategy (LSS) to estimate the AUC. We also utilized Monte Carlo simulations to evaluate the dosing of levofloxacin. Pharmacokinetic data were obtained from 10 Brazilian TB patients. The pharmacokinetic data were fitted with a one-compartment model. LSSs were developed using two methods: linear regression and Bayesian approaches. Several LSSs predicted levofloxacin AUC with good accuracy and precision. The most accurate were the method using two samples collected at 4 and 6 h (R(2) = 0.91 using linear regression and 0.97 using Bayesian approaches) and that using samples collected at 2 and 6 h (R(2) = 0.90 using linear regression and 0.96 using Bayesian approaches). The 2-and-6-h approach also provides a good estimate of the maximum concentration of the drug in serum (Cmax). Our target attainment analysis showed that higher doses (17 to 20 mg/kg of body weight) of levofloxacin might be needed to improve its activity. Doses in the range of 17 to 20 mg/kg showed good target attainment for MICs from 0.25 to 0.50. At an MIC of 2, poor target attainment was observed across all doses. This LSS for levofloxacin can be used for therapeutic drug monitoring and for future pharmacokinetic/pharmacodynamic studies.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Adolescent
  • Adult
  • Aged
  • Antitubercular Agents / therapeutic use*
  • Area Under Curve
  • Brazil
  • Humans
  • Levofloxacin / therapeutic use*
  • Microbial Sensitivity Tests
  • Middle Aged
  • Models, Biological
  • Monte Carlo Method
  • Mycobacterium tuberculosis / drug effects*
  • Tuberculosis, Multidrug-Resistant / drug therapy*
  • Tuberculosis, Pulmonary / drug therapy*
  • Young Adult


  • Antitubercular Agents
  • Levofloxacin