Tomographic phase microscopy with 180° rotation of live cells in suspension by holographic optical tweezers

Opt Lett. 2015 Apr 15;40(8):1881-4. doi: 10.1364/ol.40.001881.

Abstract

We present a new tomographic phase microscopy (TPM) approach that allows capturing the three-dimensional refractive index structure of single cells in suspension without labeling, using 180° rotation of the cells. This is obtained by integrating an external off-axis interferometer for wide-field wave front acquisition with holographic optical tweezers (HOTs) for trapping and micro-rotation of the suspended cells. In contrast to existing TPM approaches for cell imaging, our approach does not require anchoring the sample to a rotating stage, nor is it limited in angular range as is the illumination rotation approach. Thus, it allows noninvasive TPM of suspended live cells in a wide angular range. The proposed technique is experimentally demonstrated by capturing the three-dimensional refractive index map of yeast cells, while collecting interferometric projections at an angular range of 180° with 5° steps. The interferometric projections are processed by both the filtered back-projection method and the diffraction theory method. The experimental system is integrated with a spinning disk confocal fluorescent microscope for validation of the label-free TPM results.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Survival
  • Holography*
  • Interferometry
  • Microscopy / instrumentation
  • Microscopy / methods*
  • Optical Tweezers*
  • Rotation*
  • Saccharomyces cerevisiae / cytology*
  • Suspensions
  • Tomography*

Substances

  • Suspensions