Combined Label-Free Quantitative Proteomics and microRNA Expression Analysis of Breast Cancer Unravel Molecular Differences with Clinical Implications

Cancer Res. 2015 Jun 1;75(11):2243-53. doi: 10.1158/0008-5472.CAN-14-1937. Epub 2015 Apr 16.


Better knowledge of the biology of breast cancer has allowed the use of new targeted therapies, leading to improved outcome. High-throughput technologies allow deepening into the molecular architecture of breast cancer, integrating different levels of information, which is important if it helps in making clinical decisions. microRNA (miRNA) and protein expression profiles were obtained from 71 estrogen receptor-positive (ER(+)) and 25 triple-negative breast cancer (TNBC) samples. RNA and proteins obtained from formalin-fixed, paraffin-embedded tumors were analyzed by RT-qPCR and LC/MS-MS, respectively. We applied probabilistic graphical models representing complex biologic systems as networks, confirming that ER(+) and TNBC subtypes are distinct biologic entities. The integration of miRNA and protein expression data unravels molecular processes that can be related to differences in the genesis and clinical evolution of these types of breast cancer. Our results confirm that TNBC has a unique metabolic profile that may be exploited for therapeutic intervention.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Aged, 80 and over
  • Biomarkers, Tumor / biosynthesis*
  • Biomarkers, Tumor / genetics
  • Estrogen Receptor alpha / genetics
  • Female
  • Gene Expression Regulation, Neoplastic / genetics
  • Humans
  • MCF-7 Cells
  • Mass Spectrometry
  • MicroRNAs / biosynthesis*
  • MicroRNAs / genetics
  • Middle Aged
  • Proteomics*
  • Triple Negative Breast Neoplasms / genetics*
  • Triple Negative Breast Neoplasms / pathology


  • Biomarkers, Tumor
  • Estrogen Receptor alpha
  • MicroRNAs