Copper oxide impregnated wound dressing: biocidal and safety studies

Wounds. 2010 Dec;22(12):301-10.


 Copper plays a key role in angiogenesis and in the expression and stabilization of extracellular skin proteins. Copper also exhibits broad biocidal properties. The authors hypothesized that introducing copper into a wound dressing would not only reduce the risk of wound and dressing contamination, but would also stimulate wound repair. To test this hypothesis, non-stick dressings composed of a highly absorbent internal mesh fabric and an external non-woven fabric were fabricated, and each was impregnated with ~2.65% (weight/weight) copper oxide particles. The application to wounds inflicted in genetically engineered diabetic mice resulted in increased gene and in-situ upregulation of proangiogenic factors, increased blood vessel formation, and enhanced wound closure. The present study reports both the potent broad spectrum antimicrobial and antifungal properties of these wound dressings and the lack of adverse reactions as determined in rabbits and a porcine wound model. The prolonged efficacy of the wound dressing is demonstrated by its capacity to reduce the microbial challenge by more than 99.9% even when spiked 5 consecutive times with a high bacterial titer. The dressing's antimicrobial efficacy is exerted within minutes. The dressing did not cause any skin irritation or sensitization to closed skin. Furthermore, no histological differences were found between open wounds exposed to copper oxide containing wound dressings or control dressings. Therefore, copper containing wound dressings hold significant promise in wound healing and their clinical use should be explored .