Deep sequencing and SNP array analyses of pediatric T-cell acute lymphoblastic leukemia reveal NOTCH1 mutations in minor subclones and a high incidence of uniparental isodisomies affecting CDKN2A

J Hematol Oncol. 2015 Apr 24:8:42. doi: 10.1186/s13045-015-0138-0.

Abstract

Background: Pediatric T-cell acute lymphoblastic leukemia (T-ALL) is a genetically heterogeneous disease that arises in a multistep fashion through acquisition of several genetic aberrations, subsequently giving rise to a malignant, clonal expansion of T-lymphoblasts. The aim of the present study was to identify additional as well as cooperative genetic events in T-ALL.

Methods: A population-based pediatric T-ALL series comprising 47 cases was investigated by SNP array and deep sequencing analyses of 75 genes, in order to ascertain pathogenetically pertinent aberrations and to identify cooperative events.

Results: The majority (92%) of cases harbored copy number aberrations/uniparental isodisomies (UPIDs), with a median of three changes (range 0-11) per case. The genes recurrently deleted comprised CDKN2A, CDKN2B, LEF1, PTEN, RBI, and STIL. No case had a whole chromosome UPID; in fact, literature data show that this is a rare phenomenon in T-ALL. However, segmental UPIDs (sUPIDs) were seen in 42% of our cases, with most being sUPID9p that always were associated with homozygous CDKN2A deletions, with a heterozygous deletion occurring prior to the sUPID9p in all instances. Among the 75 genes sequenced, 14 (19%) were mutated in 28 (72%) of 39 analyzed cases. The genes targeted are involved in signaling transduction, epigenetic regulation, and transcription. In some cases, NOTCH1 mutations were seen in minor subclones and lost at relapse; thus, such mutations can be secondary events.

Conclusions: Deep sequencing and SNP array analyses of T-ALL revealed lack of wUPIDs, a high proportion of sUPID9p targeting CDKN2A, NOTCH1 mutations in subclones, and recurrent mutations of genes involved in signaling transduction, epigenetic regulation, and transcription.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cyclin-Dependent Kinase Inhibitor p16 / genetics*
  • Female
  • Humans
  • Incidence
  • Male
  • Polymorphism, Single Nucleotide
  • Precursor T-Cell Lymphoblastic Leukemia-Lymphoma / genetics
  • Receptor, Notch1 / genetics*
  • Uniparental Disomy

Substances

  • Cyclin-Dependent Kinase Inhibitor p16
  • NOTCH1 protein, human
  • Receptor, Notch1