GC × GC-TOFMS and supervised multivariate approaches to study human cadaveric decomposition olfactive signatures

Anal Bioanal Chem. 2015 Jun;407(16):4767-78. doi: 10.1007/s00216-015-8683-5. Epub 2015 Apr 25.

Abstract

In forensic thanato-chemistry, the understanding of the process of soft tissue decomposition is still limited. A better understanding of the decomposition process and the characterization of the associated volatile organic compounds (VOC) can help to improve the training of victim recovery (VR) canines, which are used to search for trapped victims in natural disasters or to locate corpses during criminal investigations. The complexity of matrices and the dynamic nature of this process require the use of comprehensive analytical methods for investigation. Moreover, the variability of the environment and between individuals creates additional difficulties in terms of normalization. The resolution of the complex mixture of VOCs emitted by a decaying corpse can be improved using comprehensive two-dimensional gas chromatography (GC × GC), compared to classical single-dimensional gas chromatography (1DGC). This study combines the analytical advantages of GC × GC coupled to time-of-flight mass spectrometry (TOFMS) with the data handling robustness of supervised multivariate statistics to investigate the VOC profile of human remains during early stages of decomposition. Various supervised multivariate approaches are compared to interpret the large data set. Moreover, early decomposition stages of pig carcasses (typically used as human surrogates in field studies) are also monitored to obtain a direct comparison of the two VOC profiles and estimate the robustness of this human decomposition analog model. In this research, we demonstrate that pig and human decomposition processes can be described by the same trends for the major compounds produced during the early stages of soft tissue decomposition.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cadaver*
  • Chromatography, Gas / methods*
  • Gas Chromatography-Mass Spectrometry / methods*
  • Humans
  • Multivariate Analysis
  • Volatile Organic Compounds / analysis

Substances

  • Volatile Organic Compounds